Suppr超能文献

自然模式的复杂性与熵

Complexity and entropy of natural patterns.

作者信息

Wang Haoyu, Song Changqing, Gao Peichao

机构信息

State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China.

Center for Geographic Analysis, Harvard University, Cambridge, MA 02138, USA.

出版信息

PNAS Nexus. 2024 Sep 19;3(10):pgae417. doi: 10.1093/pnasnexus/pgae417. eCollection 2024 Oct.

Abstract

Complexity and entropy play crucial roles in understanding dynamic systems across various disciplines. Many intuitively perceive them as distinct measures and assume that they have a concave-down relationship. In everyday life, there is a common consensus that while entropy never decreases, complexity does decrease after an initial increase during the process of blending coffee and milk. However, this consensus is primarily conceptual and lacks empirical evidence. Here, we provide comprehensive evidence that challenges this prevailing consensus. We demonstrate that this consensus is, in fact, an illusion resulting from the choice of system characterization (dimension) and the unit of observation (resolution). By employing a complexity measure designed for natural patterns, we find that the complexity of a coffee-milk system never decreases if the system is appropriately characterized in terms of dimension and resolution. Also, this complexity aligns experimentally and theoretically with entropy, suggesting that it does not represent a measure of so-called effective complexity. These findings rectify the prevailing conceptual consensus and reshape our understanding of the relationship between complexity and entropy. It is therefore crucial to exercise caution and pay close attention to accurately and precisely characterize dynamic systems before delving into their underlying mechanisms, despite the maturity of characterization research in various fields dealing with natural patterns such as geography and ecology. The characterization/observation (dimension and resolution) of a system fundamentally determines the assessment of complexity and entropy using existing measures and our understanding.

摘要

复杂性和熵在理解各学科中的动态系统方面发挥着关键作用。许多人直观地将它们视为不同的度量,并认为它们呈向下凹的关系。在日常生活中,人们普遍认为,虽然熵永不减少,但在混合咖啡和牛奶的过程中,复杂性在最初增加之后确实会降低。然而,这种共识主要是概念性的,缺乏实证依据。在此,我们提供了全面的证据来挑战这一普遍共识。我们证明,这种共识实际上是由于系统表征(维度)和观察单位(分辨率)的选择而产生的一种错觉。通过采用一种为自然模式设计的复杂性度量,我们发现,如果从维度和分辨率方面对咖啡 - 牛奶系统进行适当表征,该系统的复杂性永远不会降低。此外,这种复杂性在实验和理论上与熵相一致,这表明它并不代表所谓的有效复杂性的度量。这些发现纠正了普遍的概念共识,并重塑了我们对复杂性与熵之间关系的理解。因此,尽管在处理地理和生态等自然模式的各个领域中表征研究已经成熟,但在深入研究动态系统的潜在机制之前,谨慎行事并密切关注准确精确地表征动态系统至关重要。系统的表征/观察(维度和分辨率)从根本上决定了使用现有度量对复杂性和熵的评估以及我们的理解。

相似文献

1
Complexity and entropy of natural patterns.
PNAS Nexus. 2024 Sep 19;3(10):pgae417. doi: 10.1093/pnasnexus/pgae417. eCollection 2024 Oct.
2
Characterization of early partial seizure onset: frequency, complexity and entropy.
Clin Neurophysiol. 2012 Apr;123(4):658-69. doi: 10.1016/j.clinph.2011.08.003. Epub 2011 Aug 26.
4
Age-related differences in the interplay of fluency and complexity in Chinese-speaking seniors' oral narratives.
Int J Lang Commun Disord. 2024 Sep-Oct;59(5):1672-1690. doi: 10.1111/1460-6984.13023. Epub 2024 Feb 26.
5
Characterizing time series via complexity-entropy curves.
Phys Rev E. 2017 Jun;95(6-1):062106. doi: 10.1103/PhysRevE.95.062106. Epub 2017 Jun 5.
6
Activity-State Entropy: A novel brain entropy measure based on spatial patterns of activity.
J Neurosci Methods. 2023 Jun 1;393:109868. doi: 10.1016/j.jneumeth.2023.109868. Epub 2023 Apr 28.
7
Temporal complexity of fMRI is reproducible and correlates with higher order cognition.
Neuroimage. 2021 Apr 15;230:117760. doi: 10.1016/j.neuroimage.2021.117760. Epub 2021 Jan 22.
10
Metrics based on information entropy applied to evaluate complexity of landscape patterns.
PLoS One. 2022 Jan 20;17(1):e0262680. doi: 10.1371/journal.pone.0262680. eCollection 2022.

引用本文的文献

本文引用的文献

1
A spatiotemporal complexity architecture of human brain activity.
Sci Adv. 2023 Feb 3;9(5):eabq3851. doi: 10.1126/sciadv.abq3851. Epub 2023 Feb 1.
2
Information theory: A foundation for complexity science.
Proc Natl Acad Sci U S A. 2022 Aug 16;119(33):e2119089119. doi: 10.1073/pnas.2119089119. Epub 2022 Jul 27.
3
Accelerating ethics, empathy, and equity in geographic information science.
Proc Natl Acad Sci U S A. 2022 May 10;119(19):e2119967119. doi: 10.1073/pnas.2119967119. Epub 2022 May 4.
4
Interacting pest control and pollination services in coffee systems.
Proc Natl Acad Sci U S A. 2022 Apr 12;119(15):e2119959119. doi: 10.1073/pnas.2119959119. Epub 2022 Apr 4.
5
Entropy of city street networks linked to future spatial navigation ability.
Nature. 2022 Apr;604(7904):104-110. doi: 10.1038/s41586-022-04486-7. Epub 2022 Mar 30.
6
Thermodynamics of evolution and the origin of life.
Proc Natl Acad Sci U S A. 2022 Feb 8;119(6). doi: 10.1073/pnas.2120042119.
7
Toward a theory of evolution as multilevel learning.
Proc Natl Acad Sci U S A. 2022 Feb 8;119(6). doi: 10.1073/pnas.2120037119.
10
Entropy and complexity unveil the landscape of memes evolution.
Sci Rep. 2021 Oct 8;11(1):20022. doi: 10.1038/s41598-021-99468-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验