Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany.
Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany.
Sci Adv. 2023 Feb 3;9(5):eabq3851. doi: 10.1126/sciadv.abq3851. Epub 2023 Feb 1.
The human brain operates in large-scale functional networks. These networks are an expression of temporally correlated activity across brain regions, but how global network properties relate to the neural dynamics of individual regions remains incompletely understood. Here, we show that the brain's network architecture is tightly linked to critical episodes of neural regularity, visible as spontaneous "complexity drops" in functional magnetic resonance imaging signals. These episodes closely explain functional connectivity strength between regions, subserve the propagation of neural activity patterns, and reflect interindividual differences in age and behavior. Furthermore, complexity drops define neural activity states that dynamically shape the connectivity strength, topological configuration, and hierarchy of brain networks and comprehensively explain known structure-function relationships within the brain. These findings delineate a principled complexity architecture of neural activity-a human "complexome" that underpins the brain's functional network organization.
人类大脑在大规模的功能网络中运作。这些网络是大脑区域之间时间相关活动的表现,但全局网络属性如何与个体区域的神经动力学相关联,仍不完全清楚。在这里,我们表明大脑的网络结构与神经规律性的关键事件密切相关,这些事件表现为功能磁共振成像信号中的自发“复杂性下降”。这些事件可以很好地解释区域之间的功能连接强度,支持神经活动模式的传播,并反映个体间年龄和行为的差异。此外,复杂性下降定义了神经活动状态,这些状态动态地塑造了大脑网络的连接强度、拓扑结构和层次结构,并全面解释了大脑内已知的结构-功能关系。这些发现描绘了神经活动的原则性复杂性结构——人类“复杂组学”,它是大脑功能网络组织的基础。