Suppr超能文献

一种基于列线图的、针对最初表现为不明原因发热的淋巴瘤患者的预后模型。

A Nomogram-Based Prognostic Model for Lymphoma Patients Initially Presenting with Fever of Unknown Origin.

作者信息

Shen Lin, Young Wenjing, Wu Min, Xie Yanhui

机构信息

Department of Hematology, Huadong Hospital Affiliated with Fudan University, Shanghai, 200040, People's Republic of China.

出版信息

J Inflamm Res. 2024 Nov 7;17:8445-8469. doi: 10.2147/JIR.S493158. eCollection 2024.

Abstract

BACKGROUND

Patients with lymphoma who present with fever of unknown origin (FUO) as an initial symptom lack specific clinical feature analysis, prognostic factor analysis, and existing prognostic models. We aim to create a prognostic model for these patients to improve prognosis and risk assessment.

METHODS

A total of 555 lymphoma patients with FUO as initial symptom studied at Huadong Hospital affiliated with Fudan University. Univariable Cox regression identified outcome predictors, analyzed by LASSO Cox. Multifactorial Cox on screened coefficients determined independent prognostic factors and nomogram model. The validity of the nomogram was evaluated through bootstrap sampling, calibration curves for model calibration, time-dependent ROC curve analysis for discrimination assessment, and decision curve analysis for evaluating clinical usefulness. Further validation involved utilizing Kaplan-Meier curves and Log rank tests. Lastly, X-tile software determined the optimal cutoff point for the nomogram score by comparing it with the traditional International Prognostic Index (IPI) scoring system.

RESULTS

The entire cohort was divided into a training cohort (n=388) and a validation cohort (n=167). These risk factors (cell pathologic type, performance status score, Ann Arbor staging, thrombocytopenia, and raised direct bilirubin) were used to construct a web-based dynamic survival rate calculator for lymphoma patients initially presenting with FUO. The lymphoma-specific nomogram demonstrated good consistency and efficacy in predicting the model's risk stratification. Compared to the IPI scoring system, the nomogram model had higher AUC values for different clinical endpoints. The new nomogram prognostic model showed better differentiation of risk groups compared to traditional IPI scoring.

CONCLUSION

Our study developed and validated a prognostic nomogram for lymphoma patients initially presenting with FUO, demonstrating robust predictive efficacy and risk stratification ability. Furthermore, we have successfully implemented this model into a web-based dynamic survival rate calculator.

摘要

背景

以不明原因发热(FUO)为首发症状的淋巴瘤患者缺乏特异性临床特征分析、预后因素分析及现有的预后模型。我们旨在为这些患者创建一个预后模型,以改善预后和风险评估。

方法

复旦大学附属华东医院共研究了555例以FUO为首发症状的淋巴瘤患者。单因素Cox回归确定结局预测因素,通过LASSO Cox进行分析。对筛选出的系数进行多因素Cox分析,确定独立预后因素和列线图模型。通过自助抽样评估列线图的有效性,用校准曲线进行模型校准,用时间依赖ROC曲线分析进行鉴别评估,用决策曲线分析评估临床实用性。进一步验证采用Kaplan-Meier曲线和Log rank检验。最后,X-tile软件通过将列线图评分与传统国际预后指数(IPI)评分系统进行比较,确定列线图评分的最佳截断点。

结果

整个队列分为训练队列(n = 388)和验证队列(n = 167)。这些危险因素(细胞病理类型、体能状态评分、Ann Arbor分期、血小板减少和直接胆红素升高)被用于构建一个基于网络的动态生存率计算器,用于最初表现为FUO的淋巴瘤患者。淋巴瘤特异性列线图在预测模型的风险分层方面显示出良好的一致性和有效性。与IPI评分系统相比,列线图模型在不同临床终点的AUC值更高。与传统IPI评分相比,新的列线图预后模型对风险组的区分更好。

结论

我们的研究开发并验证了一个针对最初表现为FUO的淋巴瘤患者的预后列线图,显示出强大的预测效力和风险分层能力。此外,我们已成功将该模型应用于基于网络的动态生存率计算器中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c83/11552414/2a035a682eaf/JIR-17-8445-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验