Pescador-Dionisio Sara, Cendrero-Mateo Maria Pilar, Moncholí-Estornell Adrián, Robles-Fort Aida, Arzac Miren I, Renau-Morata Begoña, Fernández-Marín Beatriz, García-Plazaola José Ignacio, Molina Rosa V, Rausell Carolina, Moreno José, Nebauer Sergio G, García-Robles Inmaculada, Van Wittenberghe Shari
Laboratory of Earth Observation, Image Processing Laboratory, University of Valencia, C/Catedràtic Agustín Escardino Benlloch, 46980, Paterna, Valencia, Spain.
Department of Genetics, University of Valencia, Dr Moliner 50, 46100, Burjassot, Valencia, Spain.
New Phytol. 2025 Jan;245(2):559-576. doi: 10.1111/nph.20253. Epub 2024 Nov 12.
Early stress detection of crops requires a thorough understanding of the signals showing the very first symptoms of the alterations in the photosynthetic light reactions. Detection of the activation of the regulated heat dissipation mechanism is crucial to complement passively induced fluorescence to resolve ambuiguities in energy partitioning. Using leaf spectroscopy, we evaluated the capability of pigment spectral unmixing to calculate the fluorescence quantum efficiency (FQE) and simultaneously retrieve fast absorption changes in a drought and nitrogen deficiency experiment with tomato. In addition, active fluorescence measurements and pigment analyses of xanthophylls, carotenes and chlorophylls were conducted. We observed notable responses in noninvasive proximal sensing-retrieved FQE values under stress, but as expected, these alone were not enough to identify the constraints in photosynthetic efficiency. Reflectance-based detection of the 535-nm peak absorption change was able to complement FQE and indicate the activation of regulated heat dissipation for both stress treatments under growing light conditions. However, further complexity in the light harvesting energy regulation needs to be accounted for when considering additional light stress. Our results underscore the potential of complementary in vivo quantitative spectroscopy-based products in the early and nondestructive stress diagnosis of plants, marking the path for further applications.
作物早期胁迫检测需要深入了解那些显示光合光反应最初变化症状的信号。检测调节性热耗散机制的激活对于补充被动诱导荧光以解决能量分配中的模糊性至关重要。利用叶片光谱学,我们在番茄的干旱和氮素缺乏实验中评估了色素光谱解混计算荧光量子效率(FQE)以及同时获取快速吸收变化的能力。此外,还进行了活性荧光测量以及叶黄素、胡萝卜素和叶绿素的色素分析。我们观察到在胁迫下通过非侵入性近端传感获取的FQE值有显著响应,但正如预期的那样,仅这些值不足以识别光合效率的限制因素。基于反射率检测535 nm处的峰值吸收变化能够补充FQE,并表明在生长光照条件下两种胁迫处理中调节性热耗散的激活。然而,在考虑额外的光胁迫时,需要考虑光捕获能量调节中进一步的复杂性。我们的结果强调了基于体内定量光谱的互补性产品在植物早期无损胁迫诊断中的潜力,为进一步应用指明了方向。