Suppr超能文献

使用无设备 Wi-Fi 感应系统评估低收入老年人群的日常活动和移动能力:一项可行性研究方案。

Using a Device-Free Wi-Fi Sensing System to Assess Daily Activities and Mobility in Low-Income Older Adults: Protocol for a Feasibility Study.

机构信息

Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, United States.

School of Nursing, Virginia Commonwealth University, Richmond, VA, United States.

出版信息

JMIR Res Protoc. 2024 Nov 12;13:e53447. doi: 10.2196/53447.

Abstract

BACKGROUND

Older adults belonging to racial or ethnic minorities with low socioeconomic status are at an elevated risk of developing dementia, but resources for assessing functional decline and detecting cognitive impairment are limited. Cognitive impairment affects the ability to perform daily activities and mobility behaviors. Traditional assessment methods have drawbacks, so smart home technologies (SmHT) have emerged to offer objective, high-frequency, and remote monitoring. However, these technologies usually rely on motion sensors that cannot identify specific activity types. This group often lacks access to these technologies due to limited resources and technology experience. There is a need to develop new sensing technology that is discreet, affordable, and requires minimal user engagement to characterize and quantify various in-home activities. Furthermore, it is essential to explore the feasibility of developing machine learning (ML) algorithms for SmHT through collaborations between clinical researchers and engineers and involving minority, low-income older adults for novel sensor development.

OBJECTIVE

This study aims to examine the feasibility of developing a novel channel state information-based device-free, low-cost Wi-Fi sensing system, and associated ML algorithms for localizing and recognizing different patterns of in-home activities and mobility in residents of low-income senior housing with and without mild cognitive impairment.

METHODS

This feasibility study was conducted in collaboration with a wellness care group, which serves the healthy aging needs of low-income housing residents. Prior to this feasibility study, we conducted a pilot study to collect channel state information data from several activity scenarios (eg, sitting, walking, and preparing meals) using the proposed Wi-Fi sensing system continuously over a week in apartments of low-income housing residents. These activities were videotaped to generate ground truth annotations to test the accuracy of the ML algorithms derived from the proposed system. Using qualitative individual interviews, we explored the acceptability of the Wi-Fi sensing system and implementation barriers in the low-income housing setting. We use the same study protocol for the proposed feasibility study.

RESULTS

The Wi-Fi sensing system deployment began in November 2022, with participant recruitment starting in July 2023. Preliminary results will be available in the summer of 2025. Preliminary results are focused on the feasibility of developing ML models for Wi-Fi sensing-based activity and mobility assessment, community-based recruitment and data collection, ground truth, and older adults' Wi-Fi sensing technology acceptance.

CONCLUSIONS

This feasibility study can make a contribution to SmHT science and ML capabilities for early detection of cognitive decline among socially vulnerable older adults. Currently, sensing devices are not readily available to this population due to cost and information barriers. Our sensing device has the potential to identify individuals at risk for cognitive decline by assessing their level of physical function by tracking their in-home activities and mobility behaviors, at a low cost.

INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/53447.

摘要

背景

属于社会经济地位较低的少数族裔或种族的老年人患痴呆症的风险较高,但评估功能下降和检测认知障碍的资源有限。认知障碍会影响执行日常活动和移动行为的能力。传统的评估方法存在缺陷,因此智能家居技术(SmHT)应运而生,提供客观、高频和远程监测。然而,这些技术通常依赖于无法识别特定活动类型的运动传感器。由于资源有限和技术经验不足,这一群体通常无法使用这些技术。因此,需要开发新的传感技术,该技术应具有不引人注意、价格低廉且用户参与度低的特点,以便对各种家庭活动进行特征描述和量化。此外,通过临床研究人员和工程师之间的合作,以及涉及少数族裔和低收入老年人的新型传感器开发,探索为 SmHT 开发机器学习(ML)算法的可行性也至关重要。

目的

本研究旨在检验一种新型基于信道状态信息的免设备、低成本 Wi-Fi 传感系统的可行性,以及相关的 ML 算法,以定位和识别低收入老年人住房中患有和不患有轻度认知障碍的居民的不同家庭活动和移动模式。

方法

这项可行性研究是与一个健康护理小组合作进行的,该小组满足低收入住房居民的健康老龄化需求。在这项可行性研究之前,我们进行了一项试点研究,使用拟议的 Wi-Fi 传感系统在低收入住房居民的公寓中连续一周持续收集来自几个活动场景(例如,坐着、行走和准备饭菜)的信道状态信息数据。这些活动被录像以生成地面实况注释,以测试从提出的系统中得出的 ML 算法的准确性。通过定性的个人访谈,我们探讨了 Wi-Fi 传感系统在低收入住房环境中的可接受性和实施障碍。我们使用相同的研究方案进行拟议的可行性研究。

结果

Wi-Fi 传感系统的部署始于 2022 年 11 月,参与者招募始于 2023 年 7 月。初步结果将于 2025 年夏季公布。初步结果集中在开发基于 Wi-Fi 传感的活动和移动性评估的 ML 模型、基于社区的招募和数据收集、地面实况和老年人对 Wi-Fi 传感技术的接受程度的可行性上。

结论

这项可行性研究可以为智能家居技术科学和机器学习能力在早期发现社会弱势群体中老年人的认知能力下降方面做出贡献。目前,由于成本和信息障碍,这些人群无法使用这些传感设备。我们的传感设备具有通过跟踪他们的家庭活动和移动行为来评估他们的身体功能水平,从而以较低的成本识别有认知能力下降风险的个体的潜力。

国际注册报告标识符(IRRID):DERR1-10.2196/53447。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4959/11599892/685a9af0431b/resprot_v13i1e53447_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验