Khojasteh Samad Barri, Fuentes-Jimenez David, Pizarro Daniel, Espinel Yamid, Bartoli Adrien
Department of Electronics, Universidad de Alcala, Alcala de Henares, Madrid, Spain.
DIA2M-DRCI, CHU, Clermont-Ferrand, France.
Int J Comput Assist Radiol Surg. 2025 Jul;20(7):1481-1490. doi: 10.1007/s11548-025-03429-7. Epub 2025 May 25.
Minimally-invasive surgery (MIS) reduces the trauma compared to open surgery but is challenging for endophytic lesion localisation. Augmented reality (AR) is a promising assistance, which superimposes a preoperative 3D lesion model onto the MIS images. It requires solving the difficult problem of 3D model to MIS image registration. We propose MIS-NeRF, a neural radiance field (NeRF) which provides high-fidelity intraoperative 3D reconstruction, used to bootstrap iterative closest point (ICP) registration.
Existing NeRF methods break down in MIS because of the moving light source and specular highlights. The proposed MIS-NeRF is adapted to these conditions. First, it incorporates the camera centre as an additional input to the radiance function, which allows MIS-NeRF to handle the moving light source. Second, it uses a modified volume rendering which handles specular highlights. Third, it uses a regularised compound loss to enhance surface reconstruction.
MIS-NeRF was tested on three synthetic datasets and retrospectively on four laparoscopic surgeries. It successfully reconstructed high-fidelity liver and uterus surfaces, reducing common artefacts including high-frequency noise and bumps caused by specular highlights. ICP registration achieved faithful alignment between the preoperative and intraoperative 3D models, with an average error of 3.25 mm, outperforming the second-best method by a margin.
MIS-NeRF improves AR-based lesion localisation by facilitating accurate 3D model registration to multiple MIS images.
与开放手术相比,微创手术(MIS)减少了创伤,但对于内生性病变的定位具有挑战性。增强现实(AR)是一种有前景的辅助手段,它将术前3D病变模型叠加到MIS图像上。这需要解决3D模型与MIS图像配准的难题。我们提出了MIS-NeRF,一种神经辐射场(NeRF),它可提供高保真的术中3D重建,用于引导迭代最近点(ICP)配准。
由于移动光源和镜面高光,现有的NeRF方法在MIS中会失效。所提出的MIS-NeRF适用于这些情况。首先,它将相机中心作为辐射函数的额外输入,这使得MIS-NeRF能够处理移动光源。其次,它使用一种改进的体绘制来处理镜面高光。第三,它使用正则化复合损失来增强表面重建。
MIS-NeRF在三个合成数据集上进行了测试,并对四个腹腔镜手术进行了回顾性研究。它成功重建了高保真的肝脏和子宫表面,减少了包括镜面高光引起的高频噪声和凸起在内的常见伪影。ICP配准在术前和术中3D模型之间实现了精确对齐,平均误差为3.25毫米,比第二好的方法有显著优势。
MIS-NeRF通过促进术前3D模型与多个MIS图像的精确配准,改善了基于AR的病变定位。