Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404020, China.
Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404020, China.
J Hazard Mater. 2024 Dec 5;480:136283. doi: 10.1016/j.jhazmat.2024.136283. Epub 2024 Nov 2.
Per- and polyfluoroalkyl substances (PFASs) are persistent, bioaccumulative contaminants found in water resources at levels hazardous to human health. However, the PFAS bioaccumulation mechanism remains poorly understood. In this study, we incorporated density functional theory (DFT), molecular dynamics (MD), and experiments to analyze the partitioning pathways and to establish the structure-bioaccumulation relationship. DFT- and MD-calculated environmental fate parameters, comprising LogP, LogP, and diffusion coefficients, coincide with experiments at various ranges of PFAS molecules, with a correction coefficient (R²) of 0.783. MD simulations revealed that medium or long-chain-length PFASs spontaneously aggregate into submicelles in aquatic environments, enhancing their bioaccumulation effect. The short-chain PFASs show weak aggregation, but they also permeate into biological membranes. Particularly, it was discovered that aggregating PFASs "dissolve" into the lipid membrane matrix, owing significantly to van der Waals interactions rather than electrostatic effects. Thermodynamic analysis suggests that PFAS translocation involves spatial flips along the free energy surface. Short-chain PFASs exhibit low steric hindrance, contributing to bioaccumulation-a factor previously neglected in research. PFAS bioaccumulation depends on chain length, as further confirmed by intracellular reactive oxygen species formation and live/dead quantification in HepG2 cells. These insights advance our understanding of PFAS bioaccumulation mechanisms and highlight critical factors influencing their environmental and biological behavior.
全氟和多氟烷基物质(PFAS)是在水资源中发现的持久性、生物累积性污染物,其浓度对人类健康构成危害。然而,PFAS 的生物累积机制仍知之甚少。在本研究中,我们结合密度泛函理论(DFT)、分子动力学(MD)和实验,分析了分配途径并建立了结构-生物累积关系。DFT 和 MD 计算的环境归宿参数,包括 LogP、LogP 和扩散系数,与不同 PFAS 分子范围的实验结果吻合,校正系数(R²)为 0.783。MD 模拟表明,中长链长的 PFASs 在水相环境中自发聚集形成亚胶束,增强了其生物累积效应。短链 PFASs 表现出较弱的聚集,但它们也能渗透进入生物膜。特别是,研究发现聚集的 PFASs 通过范德华相互作用而不是静电作用“溶解”到脂质膜基质中。热力学分析表明,PFAS 转运涉及沿着自由能表面的空间翻转。短链 PFASs 表现出较低的空间位阻,这有助于生物累积,这是之前研究中被忽视的一个因素。PFAS 的生物累积取决于链长,这在 HepG2 细胞中细胞内活性氧形成和死活定量实验中得到了进一步证实。这些发现增进了我们对 PFAS 生物累积机制的理解,并强调了影响其环境和生物行为的关键因素。