Suppr超能文献

通过钒掺杂磷化镍/偏磷酸盐原位重构镍(III)基活性位点用于大电流密度下超稳定的尿素辅助水电解。

In-situ reconstitution of Ni(III)-based active sites from vanadium doped nickel phosphide/metaphosphate for super-stable urea-assisted water electrolysis at large current densities.

作者信息

Li Xiaoming, Han Binbin, Cao Shuyi, Bai Hongtao, Li Jingde, Du Xiaohang

机构信息

National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China.

Tianjin Chenli Engineering Design Co., Ltd., Tianjin 300130, China.

出版信息

J Colloid Interface Sci. 2025 Feb 15;680(Pt A):665-675. doi: 10.1016/j.jcis.2024.11.025. Epub 2024 Nov 7.

Abstract

Efficient bifunctional electrocatalysts towards oxygen evolution reaction (OER) and urea electrooxidation reaction (UOR) are urgently needed for hydrogen production from urea-containing wastewater electrolysis. The main challenge lies in the sluggish UOR kinetics and the stability of catalyst under practical high current density. Here, a vanadium doped heterostructure of Ni(PO)/NiP with shaggy nanosheet morphology was successfully synthesized. The doping of V atoms promotes the formation of Ni(PO)/NiP heterojunction in phosphating process. It is demonstrated that V-doped Ni(PO)/NiP accelerates the generation of real active site V@NiOOH in OER and UOR processes, which can also be stabilized by the PO ions. The in-situ formed V@NiOOH increases the adsorption energy of urea molecule, and reduces the adsorption energy of key intermediates *COO, thus facilitating the release of CO product from the catalyst surface. The energy barrier of *HNCON to *NCON is also reduced dramatically, promoting the kinetics of UOR. In addition, the shaggy nanosheets morphology provides large number of catalytic sites and transport channels, which are conducive to mass transfer under high current density. As a result, the V-Ni(PO)/NiP electrode based anion-exchange membrane (AEM) electrolyzer needs only 1.61 V to drive the total urea electrolysis at an industrial grade current density of 550 mA cm with an outstanding durability of 700 h. This work paves the way for designing practical efficient and stable electrocatalyst for urea contained wastewater electrolysis to produce hydrogen.

摘要

从含尿素废水电解制氢迫切需要高效的双功能电催化剂用于析氧反应(OER)和尿素电氧化反应(UOR)。主要挑战在于UOR动力学缓慢以及催化剂在实际高电流密度下的稳定性。在此,成功合成了具有蓬松纳米片形态的钒掺杂Ni(PO)/NiP异质结构。V原子的掺杂促进了磷化过程中Ni(PO)/NiP异质结的形成。结果表明,V掺杂的Ni(PO)/NiP在OER和UOR过程中加速了真实活性位点V@NiOOH的生成,其也可被PO离子稳定。原位形成的V@NiOOH增加了尿素分子的吸附能,并降低了关键中间体*COO的吸附能,从而促进了CO产物从催化剂表面的释放。HNCON到NCON的能垒也大幅降低,促进了UOR的动力学。此外,蓬松纳米片形态提供了大量的催化位点和传输通道,有利于高电流密度下的传质。结果,基于V-Ni(PO)/NiP电极的阴离子交换膜(AEM)电解槽在工业级电流密度550 mA cm下驱动尿素全电解仅需1.61 V,且具有700 h的出色耐久性。这项工作为设计用于含尿素废水电解制氢的实用高效稳定电催化剂铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验