Suppr超能文献

用于放射治疗计划的人工智能:弥合从回顾性承诺到临床现实的差距。

Artificial Intelligence for Radiation Treatment Planning: Bridging Gaps From Retrospective Promise to Clinical Reality.

作者信息

Conroy L, Winter J, Khalifa A, Tsui G, Berlin A, Purdie T G

机构信息

Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada; Techna Insitute, University Health Network, 190 Elizabeth St, Toronto, Ontario, M5G 2C4, Canada; Department of Radiation Oncology, University of Toronto, 149 College Street - Stewart Building Suite 504, Toronto, Ontario, M5T 1P5, Canada.

Techna Insitute, University Health Network, 190 Elizabeth St, Toronto, Ontario, M5G 2C4, Canada; Department of Medical Biophysics, University of Toronto, Princess Maragret Cancer Research Tower, MaRS Centre, 101 College Street, Room 15-701, Toronto, Ontario, M5G 1L7, Canada.

出版信息

Clin Oncol (R Coll Radiol). 2025 Jan;37:103630. doi: 10.1016/j.clon.2024.08.005. Epub 2024 Aug 13.

Abstract

Artificial intelligence (AI) radiation therapy (RT) planning holds promise for enhancing the consistency and efficiency of the RT planning process. Despite technical advancements, the widespread integration of AI into RT treatment planning faces challenges. The transition from controlled retrospective environments to real-world clinical settings introduces heightened scrutiny from clinical end users, potentially leading to decreased clinical acceptance. Key considerations for implementing AI RT planning include ensuring the AI model performance aligns with clinical standards, using high-quality training data, and incorporating sufficient data variation through meticulous curation by clinical experts. Beyond technical aspects, factors such as potential biases and the level of trust clinical end users place in AI may present unforeseen obstacles for real-world clinical use. Addressing these challenges requires bridging education and expertise gaps among clinical end users, enabling them to confidently embrace and utilize AI for routine RT planning. By fostering a better understanding of AI capabilities, building trust, and providing comprehensive training, the promises of AI RT planning can be a reality in the clinical setting. This article assesses the current clinical use of AI RT planning and explores challenges and considerations for bridging gaps in knowledge and expertise for AI operationalization, with focus on training data curation, workflow integration, explainability, bias, and domain knowledge. Remaining challenges in clinical implementation of AI RT treatment planning are examined in the context of trust building approaches.

摘要

人工智能(AI)放射治疗(RT)计划有望提高RT计划过程的一致性和效率。尽管技术取得了进步,但将AI广泛集成到RT治疗计划中仍面临挑战。从受控的回顾性环境过渡到实际临床环境,临床终端用户的审查更加严格,这可能导致临床接受度降低。实施AI RT计划的关键考虑因素包括确保AI模型性能符合临床标准、使用高质量的训练数据以及通过临床专家精心策划纳入足够的数据变化。除了技术方面,潜在偏差和临床终端用户对AI的信任程度等因素可能给实际临床应用带来意想不到的障碍。应对这些挑战需要弥合临床终端用户之间的教育和专业知识差距,使他们能够自信地接受并将AI用于常规RT计划。通过增进对AI能力的理解、建立信任并提供全面培训,AI RT计划的前景可以在临床环境中成为现实。本文评估了AI RT计划的当前临床应用,并探讨了弥合AI操作知识和专业知识差距的挑战和考虑因素,重点关注训练数据策划、工作流程整合、可解释性、偏差和领域知识。在建立信任方法的背景下,研究了AI RT治疗计划临床实施中仍然存在的挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验