Suppr超能文献

颠覆放射治疗:人工智能在临床实践中的作用。

Revolutionizing radiation therapy: the role of AI in clinical practice.

机构信息

Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.

Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan.

出版信息

J Radiat Res. 2024 Jan 19;65(1):1-9. doi: 10.1093/jrr/rrad090.

Abstract

This review provides an overview of the application of artificial intelligence (AI) in radiation therapy (RT) from a radiation oncologist's perspective. Over the years, advances in diagnostic imaging have significantly improved the efficiency and effectiveness of radiotherapy. The introduction of AI has further optimized the segmentation of tumors and organs at risk, thereby saving considerable time for radiation oncologists. AI has also been utilized in treatment planning and optimization, reducing the planning time from several days to minutes or even seconds. Knowledge-based treatment planning and deep learning techniques have been employed to produce treatment plans comparable to those generated by humans. Additionally, AI has potential applications in quality control and assurance of treatment plans, optimization of image-guided RT and monitoring of mobile tumors during treatment. Prognostic evaluation and prediction using AI have been increasingly explored, with radiomics being a prominent area of research. The future of AI in radiation oncology offers the potential to establish treatment standardization by minimizing inter-observer differences in segmentation and improving dose adequacy evaluation. RT standardization through AI may have global implications, providing world-standard treatment even in resource-limited settings. However, there are challenges in accumulating big data, including patient background information and correlating treatment plans with disease outcomes. Although challenges remain, ongoing research and the integration of AI technology hold promise for further advancements in radiation oncology.

摘要

这篇综述从放射肿瘤学家的角度概述了人工智能 (AI) 在放射治疗 (RT) 中的应用。多年来,诊断成像技术的进步极大地提高了放射治疗的效率和效果。人工智能的引入进一步优化了肿瘤和危及器官的分割,从而为放射肿瘤学家节省了大量时间。人工智能还被应用于治疗计划和优化,将计划时间从几天缩短到几分钟甚至几秒钟。基于知识的治疗计划和深度学习技术已被用于生成与人类生成的治疗计划相当的治疗计划。此外,人工智能在治疗计划的质量控制和保证、图像引导 RT 的优化以及治疗期间移动肿瘤的监测方面具有潜在的应用。使用 AI 进行预后评估和预测的研究也越来越多,放射组学是一个重要的研究领域。人工智能在放射肿瘤学中的未来有潜力通过最小化分割中的观察者间差异和提高剂量适当性评估来实现治疗标准化。通过 AI 实现 RT 标准化可能具有全球意义,即使在资源有限的情况下,也能提供全球标准的治疗。然而,在积累大数据方面存在挑战,包括患者背景信息和将治疗计划与疾病结果相关联。尽管仍存在挑战,但正在进行的研究和人工智能技术的整合为放射肿瘤学的进一步发展带来了希望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b478/10803173/4ca4bd29297a/rrad090f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验