Li Yuhan, Zhang Xianwen, Tai Wanbo, Zhuang Xinyu, Shi Huicheng, Liao Shumin, Yu Xinyang, Mei Rui, Chen Xingzhao, Huang Yanhong, Liu Yubin, Liu Jianying, Liu Yang, Zhu Yibin, Wang Penghua, Tian Mingyao, Yu Guocan, Li Liang, Cheng Gong
New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China.
Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China.
EBioMedicine. 2024 Dec;110:105437. doi: 10.1016/j.ebiom.2024.105437. Epub 2024 Nov 11.
Global dissemination of SARS-CoV-2 Omicron sublineages has provided a sufficient opportunity for natural selection, thus enabling beneficial mutations to emerge. Characterisation of these mutations uncovers the underlying machinery responsible for the fast transmission of Omicron variants and guides vaccine development for combating the COVID-19 pandemic.
Through systematic bioinformatics analysis of 496,606 sequences of Omicron variants, we obtained 40 amino acid substitutions that occurred with high frequency in the S protein. Utilising pseudoviruses and a trans-complementation system of SARS-CoV-2, we identified the effect of high-frequency mutations on viral infectivity and elucidated the molecular mechanisms. Finally, we evaluated the impact of a key emerging mutation on the immune protection induced by the SARS-CoV-2 VLP mRNA vaccine in a murine model.
We identified a proline-to-leucine substitution at the 1263rd residue of the Spike protein, and upon investigating the relative frequencies across multiple Omicron sublineages, we found a trend of increasing frequency for P1263L. The substitution significantly enhances the capacity for S-mediated viral entry and improves the immunogenicity of a virus-like particle mRNA vaccine. Mechanistic studies showed that this mutation is located in the FERM binding motif of the cytoplasmic tail and impairs the interaction between the S protein and the Ezrin/Radixin/Moesin proteins. Additionally, this mutation facilitates the incorporation of S proteins into SARS-CoV-2 virions.
This study offers mechanistic insight into the constantly increasing transmissibility of SARS-CoV-2 Omicron variants and provides a meaningful optimisation strategy for vaccine development against SARS-CoV-2.
This study was supported by grants from the National Key Research and Development Plan of China (2021YFC2302405, 2022YFC2303200, 2021YFC2300200 and 2022YFC2303400), the National Natural Science Foundation of China (32188101, 32200772, 82422049, 82241082, 32270182, 82372254, 82271872, 82341046, 32100755 and 82102389), Shenzhen Medical Research Fund (B2404002, A2303036), the Shenzhen Bay Laboratory Startup Fund (21330111), Shenzhen San-Ming Project for Prevention and Research on Vector-borne Diseases (SZSM202211023), Yunnan Provincial Science and Technology Project at Southwest United Graduate School (202302AO370010). The New Cornerstone Science Foundation through the New Cornerstone Investigator Program, and the Xplorer Prize from Tencent Foundation.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)奥密克戎亚谱系在全球的传播为自然选择提供了充足机会,从而使有益突变得以出现。对这些突变的特征分析揭示了奥密克戎变体快速传播的潜在机制,并为抗击2019冠状病毒病(COVID-19)大流行的疫苗研发提供指导。
通过对496,606条奥密克戎变体序列进行系统的生物信息学分析,我们获得了在刺突(S)蛋白中高频出现的40个氨基酸替换。利用伪病毒和SARS-CoV-2的反式互补系统,我们确定了高频突变对病毒感染性的影响,并阐明了分子机制。最后,我们在小鼠模型中评估了一个新出现的关键突变对SARS-CoV-2病毒样颗粒(VLP)mRNA疫苗诱导的免疫保护的影响。
我们在刺突蛋白的第1263位残基处鉴定到一个脯氨酸到亮氨酸的替换,在研究多个奥密克戎亚谱系中的相对频率时,我们发现P1263L的频率有增加趋势。该替换显著增强了S介导的病毒进入能力,并提高了病毒样颗粒mRNA疫苗的免疫原性。机制研究表明,该突变位于细胞质尾的FERM结合基序中,损害了S蛋白与埃兹蛋白/根蛋白/膜突蛋白(Ezrin/Radixin/Moesin,ERM)之间的相互作用。此外,该突变促进了S蛋白掺入SARS-CoV-2病毒粒子。
本研究为SARS-CoV-2奥密克戎变体不断增加的传播性提供了机制性见解,并为针对SARS-CoV-2的疫苗研发提供了有意义的优化策略。
本研究得到了中国国家重点研发计划(2021YFC2302405、2022YFC2303200、2021YFC2300200和2022YFC2303400)、国家自然科学基金(32188101、32200772、82422049、82241082、32270182、82372254, 82271872, 82341046, 32100755和82102389)、深圳市医学科研基金(B2404002、A2303036)、深圳湾实验室启动基金(21330111)、深圳市媒介传播疾病预防与研究三明项目(SZSM202211023)、西南联合研究生院云南省科技项目(202302AO370010)的资助。新基石科学基金会通过新基石研究员计划以及腾讯基金会的科学探索奖提供了资助。