Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain.
Front Immunol. 2024 Aug 29;15:1420304. doi: 10.3389/fimmu.2024.1420304. eCollection 2024.
Despite the decrease in mortality and morbidity due to SARS-CoV-2 infection, the incidence of infections due to Omicron subvariants of SARS-CoV-2 remains high. The mutations acquired by these subvariants, mainly concentrated in the receptor-binding domain (RBD), have caused a shift in infectivity and transmissibility, leading to a loss of effectiveness of the first authorized COVID-19 vaccines, among other reasons, by neutralizing antibody evasion. Hence, the generation of new vaccine candidates adapted to Omicron subvariants is of special interest in an effort to overcome this immune evasion. Here, an optimized COVID-19 vaccine candidate, termed MVA-S(3P_BA.1), was developed using a modified vaccinia virus Ankara (MVA) vector expressing a full-length prefusion-stabilized SARS-CoV-2 spike (S) protein from the Omicron BA.1 variant. The immunogenicity and efficacy induced by MVA-S(3P_BA.1) were evaluated in mice in a head-to-head comparison with the previously generated vaccine candidates MVA-S(3P) and MVA-S(3Pbeta), which express prefusion-stabilized S proteins from Wuhan strain and Beta variant, respectively, and with a bivalent vaccine candidate composed of a combination of MVA-S(3P) and MVA-S(3P_BA.1). The results showed that all four vaccine candidates elicited, after a single intramuscular dose, protection of transgenic K18-hACE2 mice challenged with SARS-CoV-2 Omicron BA.1, reducing viral loads, histopathological lesions, and levels of proinflammatory cytokines in the lungs. They also elicited anti-S IgG and neutralizing antibodies against various Omicron subvariants, with MVA-S(3P_BA.1) and the bivalent vaccine candidate inducing higher titers. Additionally, an intranasal immunization in C57BL/6 mice with all four vaccine candidates induced systemic and mucosal S-specific CD4 and CD8 T-cell and humoral immune responses, and the bivalent vaccine candidate induced broader immune responses, eliciting antibodies against the ancestral Wuhan strain and different Omicron subvariants. These results highlight the use of MVA as a potent and adaptable vaccine vector against new emerging SARS-CoV-2 variants, as well as the promising feature of combining multivalent MVA vaccine candidates.
尽管由于 SARS-CoV-2 感染导致的死亡率和发病率有所下降,但由于 SARS-CoV-2 的奥密克戎亚变体引起的感染发生率仍然很高。这些亚变体获得的突变主要集中在受体结合域(RBD),导致了感染力和传染性的转变,除其他原因外,还导致了第一批授权的 COVID-19 疫苗的效力下降,通过中和抗体逃逸。因此,生成适应奥密克戎亚变体的新疫苗候选物对于克服这种免疫逃逸特别感兴趣。在这里,使用一种改良的痘苗病毒安卡拉(MVA)载体,开发了一种优化的 COVID-19 疫苗候选物,称为 MVA-S(3P_BA.1),该载体表达来自奥密克戎 BA.1 变体的全长预融合稳定的 SARS-CoV-2 刺突(S)蛋白。在与先前生成的疫苗候选物 MVA-S(3P)和 MVA-S(3Pbeta)的头对头比较中,评估了 MVA-S(3P_BA.1)在小鼠中的免疫原性和疗效,MVA-S(3P)和 MVA-S(3Pbeta)分别表达来自武汉株和 Beta 变体的预融合稳定 S 蛋白,以及由 MVA-S(3P)和 MVA-S(3P_BA.1)组合而成的二价疫苗候选物。结果表明,在单次肌肉内剂量后,所有四种疫苗候选物都能保护转基因 K18-hACE2 小鼠免受 SARS-CoV-2 奥密克戎 BA.1 的攻击,降低病毒载量、肺组织病理学损伤和促炎细胞因子水平。它们还诱导了针对各种奥密克戎亚变体的抗-S IgG 和中和抗体,MVA-S(3P_BA.1)和二价疫苗候选物诱导的滴度更高。此外,用所有四种疫苗候选物对 C57BL/6 小鼠进行鼻内免疫,可诱导全身和黏膜 S 特异性 CD4 和 CD8 T 细胞和体液免疫反应,而二价疫苗候选物可诱导更广泛的免疫反应,诱导针对原始武汉株和不同奥密克戎亚变体的抗体。这些结果强调了使用 MVA 作为针对新出现的 SARS-CoV-2 变体的有效和适应性强的疫苗载体的作用,以及结合多价 MVA 疫苗候选物的有前途的特征。