Suppr超能文献

利用古代 DNA 揭示因混合或漂变而在欧洲失去的自然选择信号。

Leveraging ancient DNA to uncover signals of natural selection in Europe lost due to admixture or drift.

机构信息

Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA.

Department of Computational Medicine, University of California, Los Angeles, CA, USA.

出版信息

Nat Commun. 2024 Nov 12;15(1):9772. doi: 10.1038/s41467-024-53852-8.

Abstract

Large ancient DNA (aDNA) studies offer the chance to examine genomic changes over time, providing direct insights into human evolution. While recent studies have used time-stratified aDNA for selection scans, most focus on single-locus methods. We conducted a multi-locus genotype scan on 708 samples spanning 7000 years of European history. We show that the G12 statistic, originally designed for unphased diploid data, can effectively detect selection in aDNA processed to create 'pseudo-haplotypes'. In simulations and at known positive control loci (e.g., lactase persistence), G12 outperforms the allele frequency-based selection statistic, SweepFinder2, previously used on aDNA. Applying our approach, we identified 14 candidate regions of selection across four time periods, with half the signals detectable only in the earliest period. Our findings suggest that selective events in European prehistory, including from the onset of animal domestication, have been obscured by neutral processes like genetic drift and demographic shifts such as admixture.

摘要

大规模古代 DNA(aDNA)研究提供了考察随时间变化的基因组变化的机会,为人类进化提供了直接的见解。虽然最近的研究已经使用时间分层的 aDNA 进行选择扫描,但大多数研究都集中在单基因座方法上。我们对跨越欧洲历史 7000 年的 708 个样本进行了多基因座基因型扫描。我们表明,最初为非相位二倍体数据设计的 G12 统计量可以有效地检测到经过处理以创建“伪单倍型”的 aDNA 中的选择。在模拟和已知的阳性对照基因座(例如,乳糖酶持续性)中,G12 优于以前在 aDNA 上使用的基于等位基因频率的选择统计量 SweepFinder2。应用我们的方法,我们在四个时间段内确定了 14 个候选选择区域,其中一半信号仅在最早的时间段内可检测到。我们的研究结果表明,欧洲史前的选择性事件,包括动物驯化的开始,已经被中性过程(如遗传漂变和混合等人口变化)所掩盖。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a575/11557891/de65e45ece88/41467_2024_53852_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验