Zhang Zongjian, Zou Yanli, Tan Yufei, Zhou Chiyang
Guangxi Key Laboratory of Brain-Inspired Computing and Intelligent Chips, School of Electronic and Information Engineering, Guangxi Normal University, Guilin, China.
Key Laboratory of Nonlinear Circuits and Optical Communications (Guangxi Normal University), Education Department of Guangxi Zhuang Autonomous Region, Guilin, China.
Sci Rep. 2024 Nov 12;14(1):27716. doi: 10.1038/s41598-024-78578-x.
Real-time detection and accurate segmentation of chip pads are important tasks to ensure chip alignment and position correction. To address the challenges of small target chip pad detection, segmentation accuracy and model lightweight, this paper proposes a lightweight chip pad instance segmentation algorithm based on an improved YOLOv8-seg, named YOLOv8-seg-CP (chip pad). Firstly, we integrate the next-generation lightweight StarNet into the original backbone network to enhance fine feature capture capabilities while reducing the number of parameters. Then, we construct the C2f-Star module in the neck network, which enhances the feature extraction performance for small chip pad targets. This maintains accuracy, reduces computational load, and improves detection and segmentation speed. On this basis, we introduce a lightweight shared convolution segmentation head (LSCSH), significantly reducing both parameter count and computational load while enhancing segmentation performance. Additionally, we propose a CGCAFusion convolutional attention fusion module. This module uses a content-guided convolutional attention fusion mechanism to dynamically adjust attention weights based on the content of input features, capturing both global and local feature information and enhancing multimodal feature fusion. Experiments on the chip pad dataset demonstrate that our algorithm achieves a detection and segmentation accuracy of 89.8%. The model size, parameters, and FLOPs are 3.7 M, 1.7 M, and 8.2 G respectively, representing reductions of 45.6%, 50%, and 31.7% compared to the baseline model. The FPS is 1399.3, an improvement of 25.8% over the baseline model. The inference time is 0.72ms, which is 0.18ms less than the baseline model. Extensive experimental results on COCO, carparts-seg, and crack-seg datasets further show that the improved YOLOv8n-seg model outperforms many existing advanced methods in terms of performance. This approach holds significant industrial application value for fully automated chip testing and sorting integrated production.
芯片焊盘的实时检测和精确分割是确保芯片对准和位置校正的重要任务。为应对小目标芯片焊盘检测、分割精度和模型轻量化等挑战,本文提出一种基于改进的YOLOv8-seg的轻量化芯片焊盘实例分割算法,名为YOLOv8-seg-CP(芯片焊盘)。首先,我们将下一代轻量化StarNet集成到原始骨干网络中,以增强精细特征捕获能力,同时减少参数数量。然后,我们在颈部网络中构建C2f-Star模块,增强对小芯片焊盘目标的特征提取性能。这在保持精度的同时,减少了计算量,提高了检测和分割速度。在此基础上,我们引入了轻量化共享卷积分割头(LSCSH),在增强分割性能的同时,显著减少了参数数量和计算量。此外,我们提出了一种CGCAFusion卷积注意力融合模块。该模块采用内容引导的卷积注意力融合机制,根据输入特征的内容动态调整注意力权重,捕获全局和局部特征信息,增强多模态特征融合。在芯片焊盘数据集上的实验表明,我们的算法实现了89.8%的检测和分割准确率。模型大小、参数和FLOP分别为3.7M、1.7M和8.2G,与基线模型相比分别减少了45.6%、50%和31.7%。FPS为1399.3,比基线模型提高了25.8%。推理时间为0.72ms,比基线模型少0.18ms。在COCO、汽车零部件分割和裂纹分割数据集上的大量实验结果进一步表明,改进后的YOLOv8n-seg模型在性能方面优于许多现有的先进方法。这种方法对于全自动芯片测试和分拣集成生产具有重要的工业应用价值。