Suppr超能文献

面部表情识别与预测系统。

Facial Image expression recognition and prediction system.

机构信息

Department of Mathematics, SAS, Vellore Institute of Technology, Chennai, 600127, Tamilnadu, India.

出版信息

Sci Rep. 2024 Nov 12;14(1):27760. doi: 10.1038/s41598-024-79146-z.

Abstract

Facial expression recognition system is an advanced technology that allows machines to recognize human emotions based on their facial expressions. In order to develop a robust prediction model, this research work proposes three distinct architectural models to produce a facial expression prediction system that looks like this: The first model is on using a support vector machine to carry out a classification task. As a follow-up to the second model, an attempt was made to create a Convolution Neural Network (CNN) using the VGG-NET (Visual Geometry Group Network). Following analysis of the results, an attempt was made to enhance the outcome using the third model, which used convolutional sequential layers linked to seven distinct expressions, and an inference was drawn based on loss and accuracy metric behavior. We will use a dataset of human picture facial images in this research, which has more than 35500 facial photographs and represents seven different types of facial expressions. We will analyze our data and make every effort to remove as much noise as we can before feeding that information to our model. We use the confusion matrix to assess the model's performance after it has been implemented effectively. To demonstrate the effectiveness of our model architecture, we will generate bar graphs and scatter plots for each model to display model loss and accuracy. The output of this model is visualized with actual class and predictive class and the result has a graphical representation for each and every output facial Images which makes our recognition system user-friendly.

摘要

面部表情识别系统是一项先进的技术,它可以让机器根据面部表情识别人类的情绪。为了开发一个强大的预测模型,这项研究工作提出了三个不同的架构模型,以生成一个这样的面部表情预测系统:第一个模型是使用支持向量机进行分类任务。作为第二个模型的后续,尝试使用 VGG-NET(视觉几何组网络)创建卷积神经网络 (CNN)。在分析结果之后,尝试使用第三个模型来增强结果,该模型使用与七个不同表情相关联的卷积序列层,并根据损失和准确性度量行为进行推断。在这项研究中,我们将使用人类图片面部图像数据集,其中包含超过 35500 张面部照片,代表七种不同类型的面部表情。我们将分析我们的数据,并尽最大努力在将信息输入我们的模型之前消除尽可能多的噪声。我们使用混淆矩阵来评估模型在有效实施后的性能。为了展示我们的模型架构的有效性,我们将为每个模型生成条形图和散点图,以显示模型的损失和准确性。该模型的输出通过实际类和预测类进行可视化,并且为每个输出面部图像提供图形表示,这使得我们的识别系统用户友好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/050d/11557705/de11788ed2cf/41598_2024_79146_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验