Li Mengyan, Li Xiaoou, Pan Kevin, Geva Alon, Yang Doris, Sweet Sara Morini, Bonzel Clara-Lea, Ayakulangara Panickan Vidul, Xiong Xin, Mandl Kenneth, Cai Tianxi
Department of Mathematical Sciences, Bentley University, Waltham, MA, USA.
School of Statistics, University of Minnesota, Minneapolis, MN, USA.
NPJ Digit Med. 2024 Nov 13;7(1):319. doi: 10.1038/s41746-024-01320-4.
Electronic Health Record (EHR) systems are particularly valuable in pediatrics due to high barriers in clinical studies, but pediatric EHR data often suffer from low content density. Existing EHR code embeddings tailored for the general patient population fail to address the unique needs of pediatric patients. To bridge this gap, we introduce a transfer learning approach, MUltisource Graph Synthesis (MUGS), aimed at accurate knowledge extraction and relation detection in pediatric contexts. MUGS integrates graphical data from both pediatric and general EHR systems, along with hierarchical medical ontologies, to create embeddings that adaptively capture both the homogeneity and heterogeneity between hospital systems. These embeddings enable refined EHR feature engineering and nuanced patient profiling, proving particularly effective in identifying pediatric patients similar to specific profiles, with a focus on pulmonary hypertension (PH). MUGS embeddings, resistant to negative transfer, outperform other benchmark methods in multiple applications, advancing evidence-based pediatric research.
电子健康记录(EHR)系统在儿科学中特别有价值,因为临床研究存在高障碍,但儿科EHR数据往往内容密度低。为一般患者群体量身定制的现有EHR代码嵌入无法满足儿科患者的独特需求。为了弥合这一差距,我们引入了一种迁移学习方法,即多源图合成(MUGS),旨在在儿科环境中进行准确的知识提取和关系检测。MUGS整合了来自儿科和一般EHR系统的图形数据以及分层医学本体,以创建能够自适应捕获医院系统之间同质性和异质性的嵌入。这些嵌入能够实现精细的EHR特征工程和细致入微的患者概况分析,在识别与特定概况相似的儿科患者方面特别有效,重点是肺动脉高压(PH)。MUGS嵌入具有抗负迁移能力,在多个应用中优于其他基准方法,推动了循证儿科研究。