Suppr超能文献

单细胞和批量转录组分析揭示葡萄膜黑色素瘤中的肿瘤细胞异质性和潜在的分子程序。

Single-cell and bulk transcriptome analysis reveals tumor cell heterogeneity and underlying molecular program in uveal melanoma.

机构信息

State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.

National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.

出版信息

J Transl Med. 2024 Nov 12;22(1):1020. doi: 10.1186/s12967-024-05831-2.

Abstract

BACKGROUND

Uveal melanoma (UM) is a rare and deadly eye cancer with high metastatic potential. Despite the predominance of malignant cells within the tumor microenvironment, the heterogeneity and underlying molecular features remain to be fully characterized.

METHODS

We analyzed single-cell transcriptomic profiling of 37,660 malignant cells from 17 UM tumors. A consensus non-negative factorization algorithm was used to decipher transcriptional programs underlying tumor cell-intrinsic heterogeneity. Tumor-infiltrated immune cells were computationally estimated from bulk transcriptomes and bioinformatics methods. A gene signature was derived for subtyping and prognostic stratification and validated in multicenter cohorts.

RESULTS

ScRNA-seq analysis revealed the existence of diverse subpopulations and transcriptional variability among malignant cells within and between tumors. Furthermore, we observed that the heterogeneity of malignant cell states and compositions correlated with genomic, immunological, and clinical characteristics. By identifying gene expression programs associated with malignant cell heterogeneity at the single cell level, UM samples were classified into two distinct intra-tumoral subtypes (ITMH and ITMH) with different prognoses and immune microenvironments. Finally, a machine learning-derived 9-gene signature was developed to translate single-cell information into bulk tissue transcriptomes for patient stratification and was validated in multicenter cohorts.

CONCLUSIONS

Our study provides insight into understanding the intra-tumoral heterogeneity of UM and its potential impact on patient stratification.

摘要

背景

葡萄膜黑色素瘤(UM)是一种罕见且致命的眼癌,具有很高的转移潜能。尽管肿瘤微环境中存在大量恶性细胞,但肿瘤内异质性和潜在的分子特征仍有待充分表征。

方法

我们分析了来自 17 个 UM 肿瘤的 37660 个恶性细胞的单细胞转录组谱。使用一致非负因子分解算法来破译肿瘤细胞内在异质性的转录程序。从批量转录组和生物信息学方法计算估计肿瘤浸润免疫细胞。衍生了一个基因特征用于亚分型和预后分层,并在多中心队列中进行验证。

结果

scRNA-seq 分析显示,肿瘤内和肿瘤间恶性细胞存在不同的亚群和转录变异性。此外,我们观察到恶性细胞状态和组成的异质性与基因组、免疫学和临床特征相关。通过在单细胞水平上识别与恶性细胞异质性相关的基因表达程序,UM 样本被分为两个不同的肿瘤内亚型(ITMH 和 ITMH),具有不同的预后和免疫微环境。最后,开发了一种基于机器学习的 9 基因特征,可将单细胞信息转化为批量组织转录组,用于患者分层,并在多中心队列中进行验证。

结论

我们的研究深入了解了 UM 的肿瘤内异质性及其对患者分层的潜在影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fc1/11555829/deeb92141ea9/12967_2024_5831_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验