Suppr超能文献

基于深度学习的苏木精和伊红染色全切片图像对小细胞肺癌进行组织形态学亚型分类和风险分层

Deep learning-based histomorphological subtyping and risk stratification of small cell lung cancer from hematoxylin and eosin-stained whole slide images.

作者信息

Zhang Yibo, Liu Shilong, Chen Jun, Chen Ruanqi, Yang Zijian, Sheng Ruyu, Li Xin, Wang Taolue, Liu Hongyu, Yang Fan, Ying Jianming, Yang Lin, Sun Jie, Zhou Meng

机构信息

School of Biomedical Engineering, Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China.

Department of Thoracic Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, People's Republic of China.

出版信息

Genome Med. 2025 Sep 2;17(1):98. doi: 10.1186/s13073-025-01526-5.

Abstract

BACKGROUND

Accurate subtyping and risk stratification are imperative for prognostication and clinical decision-making in small cell lung cancer (SCLC). However, traditional molecular subtyping is resource-intensive and challenging to translate into clinical practice.

METHODS

A total of 517 SCLC patients and their corresponding hematoxylin and eosin (H&E)-stained whole slide images (WSIs) from three independent medical institutions were analyzed. A hybrid clustering-based unsupervised deep representation learning model was developed to identify histomorphological phenotypes (HIPO) and characterize tumor ecosystem diversity. Consensus clustering and a deep learning-based stratification system were used to define histomorphological subtypes (HIPOS) based on patient-level HIPO features. Survival analysis and Cox proportional hazards regression models were used to assess the clinical significance of HIPOS. An integrated analysis of pathomics, proteomics, and immunohistochemistry was conducted to explore the biological and microenvironmental correlates of HIPOS.

RESULTS

We performed histomorphological phenotyping of SCLC using unsupervised deep representation learning from WSIs and identified 15 HIPOs. Unsupervised clustering of HIPO profiles stratified SCLCs into two reproducible image-based subtypes: HIPOS-I and HIPOS-II. Patients in the HIPOS-I group had better overall survival and disease-free survival compared to those in HIPOS-II, independent of clinical features and molecular subtypes. Multimodal analyses revealed that HIPOS-I tumors were characterized by enriched immune infiltration and immune activation, whereas HIPOS-II tumors displayed increased fibrosis, cellular pleomorphism, and dysregulated oxidative metabolism. Additionally, we developed a simplified deep-learning model to predict HIPOS subtypes to enhance clinical applications and validated the prognostic value of these subtypes in independent cohorts.

CONCLUSIONS

This study demonstrates the potential of a deep learning-based histomorphological subtyping system to improve patient stratification and prognosis prediction in SCLC. The HIPOS offers a promising and clinically applicable tool for personalized management using routine H&E-stained WSIs.

摘要

背景

准确的亚型分类和风险分层对于小细胞肺癌(SCLC)的预后评估和临床决策至关重要。然而,传统的分子亚型分类资源消耗大,且难以转化为临床实践。

方法

分析了来自三个独立医疗机构的517例SCLC患者及其相应的苏木精和伊红(H&E)染色全切片图像(WSIs)。开发了一种基于混合聚类的无监督深度表征学习模型,以识别组织形态学表型(HIPO)并表征肿瘤生态系统多样性。使用一致性聚类和基于深度学习的分层系统,根据患者水平的HIPO特征定义组织形态学亚型(HIPOS)。采用生存分析和Cox比例风险回归模型评估HIPOS的临床意义。进行了病理组学、蛋白质组学和免疫组织化学的综合分析,以探索HIPOS的生物学和微环境相关性。

结果

我们使用来自WSIs的无监督深度表征学习对SCLC进行了组织形态学表型分析,识别出15种HIPO。HIPO谱的无监督聚类将SCLC分为两种可重复的基于图像的亚型:HIPOS-I和HIPOS-II。与HIPOS-II组患者相比,HIPOS-I组患者的总生存期和无病生存期更好,与临床特征和分子亚型无关。多模态分析显示,HIPOS-I肿瘤的特征是免疫浸润和免疫激活增强,而HIPOS-II肿瘤表现出纤维化增加、细胞多形性和氧化代谢失调。此外,我们开发了一种简化的深度学习模型来预测HIPOS亚型,以增强临床应用,并在独立队列中验证了这些亚型的预后价值。

结论

本研究证明了基于深度学习的组织形态学亚型分类系统在改善SCLC患者分层和预后预测方面的潜力。HIPOS为使用常规H&E染色WSIs进行个性化管理提供了一种有前景且临床适用的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bdf/12406473/f88bac49ce7e/13073_2025_1526_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验