Azman Min Mardhiyyah, Haris Muhammad Salahuddin, Lestari Widya, Husain Juzaily, Abdul Qader Omar Abdul Jabbar, Wan Abd Manan Wan Nor Hayati
Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia.
IKOP PHARMA Sdn. Bhd., 25200 Kuantan, Pahang, Malaysia.
Data Brief. 2024 Oct 12;57:111028. doi: 10.1016/j.dib.2024.111028. eCollection 2024 Dec.
This study aims to characterise and assess the stability of an optimised lignocaine-adrenaline nanogel using central composite design (CCD). Compatibility studies were conducted using Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) and Ultraviolet-visible (UV-vis) spectroscopy. Eighteen lignocaine-adrenaline Nanoemulsion (LANE) formulations derived using CCD were characterised for particle size, polydispersity index (PDI), zeta potential and pH. All LANE formulations were transformed into lignocaine-adrenaline Nanoemulsion-based Gel (NBG) by adding 0.1 % Carbopol 940. Stability studies for LANE and NBG were conducted for 12 months storage at 25 °C. The results of long-term stability assessment of LANEs and NBGs were integrated with CCD predictions to produce the optimised NBG, lignocaine-adrenaline Nanogel. The optimised NBG model was validated in triplicates. The optimised NBG was subjected to 5000 rpm centrifugation for 30 min, repeated heating-cooling cycles (40 °C and 4 °C), and a freeze-thaw cycle (-5 °C and 25 °C). ATR-FTIR and UV-vis results indicated compatibility between lignocaine, adrenaline and the excipients. The viscosity of the nanogel corresponded to that of ferric sulphate solution (24 ± 1 mPa·s at 20 °C). The LANE and NBG formulations showed no drug precipitation or phase separation after the stability study. The optimised NBG had particle size (61.76 ± 0.25 nm), PDI (0.36 ± 0.01), zeta potential (-26.47 ± 0.02 mV) and pH (6.28 ± 0.02). The optimised NBG remained stable in stress-induced environments. CCD enabled optimisation of a stable NBG formulation.
本研究旨在使用中心复合设计(CCD)对优化的利多卡因 - 肾上腺素纳米凝胶进行表征并评估其稳定性。使用衰减全反射傅里叶变换红外光谱(ATR - FTIR)和紫外可见光谱(UV - vis)进行相容性研究。对采用CCD得出的18种利多卡因 - 肾上腺素纳米乳剂(LANE)配方进行粒径、多分散指数(PDI)、zeta电位和pH值的表征。通过添加0.1%的卡波姆940,将所有LANE配方转化为基于利多卡因 - 肾上腺素纳米乳剂的凝胶(NBG)。对LANE和NBG进行稳定性研究,在25°C下储存12个月。将LANE和NBG的长期稳定性评估结果与CCD预测结果相结合,以制备优化的NBG,即利多卡因 - 肾上腺素纳米凝胶。对优化的NBG模型进行了三次验证。对优化的NBG进行5000转/分钟的离心30分钟、重复的加热 - 冷却循环(40°C和4°C)以及冻融循环(-5°C和25°C)。ATR - FTIR和UV - vis结果表明利多卡因、肾上腺素与辅料之间具有相容性。纳米凝胶的粘度与硫酸铁溶液的粘度相当(20°C时为24±1 mPa·s)。稳定性研究后,LANE和NBG配方未出现药物沉淀或相分离现象。优化的NBG粒径为(61.76±0.25 nm),PDI为(0.36±0.01),zeta电位为(-26.47±0.02 mV),pH值为(6.28±0.02)。优化的NBG在应激诱导环境中保持稳定。CCD实现了稳定的NBG配方的优化。