Suppr超能文献

基于混合自适应电导的指数积分发放神经元模型中的不完全嵌合体与同步

Imperfect chimera and synchronization in a hybrid adaptive conductance based exponential integrate and fire neuron model.

作者信息

Kanagaraj Sathiyadevi, Moroz Irene, Durairaj Premraj, Karthikeyan Anitha, Rajagopal Karthikeyan

机构信息

Centre for Nonlinear Systems, Chennai Institute of Technology, Chennai, Tamilnadu 600 069 India.

Mathematical Institute, Oxford University, Oxford, OX2 6GG UK.

出版信息

Cogn Neurodyn. 2024 Apr;18(2):473-484. doi: 10.1007/s11571-023-10000-0. Epub 2023 Aug 24.

Abstract

In this study, the hybrid conductance-based adaptive exponential integrate and fire (CadEx) neuron model is proposed to determine the effect of magnetic flux on conductance-based neurons. To begin with, bifurcation analysis is carried out in relation to the input current, resetting parameter, and adaptation time constant in order to comprehend dynamical transitions. We exemplify that the existence of period-1, period-2, and period-4 cycles depends on the magnitude of input current via period doubling and period halving bifurcations. Furthermore, the presence of chaotic behavior is discovered by varying the adaptation time constant via the period doubling route. Following that, we examine the network behavior of CadEx neurons and discover the presence of a variety of dynamical behaviors such as desynchronization, traveling chimera, traveling wave, imperfect chimera, and synchronization. The appearance of synchronization is especially noticeable when the magnitude of the magnetic flux coefficient or the strength of coupling strength is increased. As a result, achieving synchronization in CadEx is essential for neuron activity, which can aid in the realization of such behavior during many cognitive processes.

摘要

在本研究中,提出了基于混合电导的自适应指数积分发放(CadEx)神经元模型,以确定磁通量对基于电导的神经元的影响。首先,针对输入电流、重置参数和适应时间常数进行分岔分析,以理解动态转变。我们通过倍周期分岔和周期减半分岔举例说明,1周期、2周期和4周期循环的存在取决于输入电流的大小。此外,通过倍周期路径改变适应时间常数,发现了混沌行为的存在。随后,我们研究了CadEx神经元的网络行为,发现了诸如去同步、行波奇美拉、行波、不完全奇美拉和同步等多种动态行为。当磁通量系数的大小或耦合强度增加时,同步的出现尤为明显。因此,在CadEx中实现同步对于神经元活动至关重要,这有助于在许多认知过程中实现此类行为。

相似文献

6
Conductance-Based Adaptive Exponential Integrate-and-Fire Model.基于电导的自适应指数积分和放电模型。
Neural Comput. 2021 Jan;33(1):41-66. doi: 10.1162/neco_a_01342. Epub 2020 Nov 30.
7
Dynamical Analysis of the Hindmarsh-Rose Neuron With Time Delays.时滞 Hindmarsh-Rose 神经元的动力学分析。
IEEE Trans Neural Netw Learn Syst. 2017 Aug;28(8):1953-1958. doi: 10.1109/TNNLS.2016.2557845. Epub 2016 May 25.

本文引用的文献

1
Emerging memristive neurons for neuromorphic computing and sensing.用于神经形态计算与传感的新型忆阻神经元
Sci Technol Adv Mater. 2023 Apr 19;24(1):2188878. doi: 10.1080/14686996.2023.2188878. eCollection 2023.
7
Conductance-Based Adaptive Exponential Integrate-and-Fire Model.基于电导的自适应指数积分和放电模型。
Neural Comput. 2021 Jan;33(1):41-66. doi: 10.1162/neco_a_01342. Epub 2020 Nov 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验