Nguyen Quynh-Anh, Rubchinsky Leonid L
Department of Mathematical Sciences, Indiana University Indianapolis, Indianapolis, IN 46202 USA.
Present Address: Department of Mathematical Sciences, University of Indianapolis, Indianapolis, IN 46227 USA.
Cogn Neurodyn. 2024 Dec;18(6):3821-3837. doi: 10.1007/s11571-024-10150-9. Epub 2024 Aug 29.
Synchronization of neural activity in the gamma frequency band is associated with various cognitive phenomena. Abnormalities of gamma synchronization may underlie symptoms of several neurological and psychiatric disorders such as schizophrenia and autism spectrum disorder. Properties of neural oscillations in the gamma band depend critically on the synaptic properties of the underlying circuits. This study explores how synaptic properties in pyramidal-interneuronal circuits affect not only the average synchronization strength but also the fine temporal patterning of neural synchrony. If two signals show only moderate synchrony strength, it may be possible to consider these dynamics as alternating between synchronized and desynchronized states. We use a model of connected circuits that produces pyramidal-interneuronal gamma oscillations to explore the temporal patterning of synchronized and desynchronized intervals. Changes in synaptic strength may alter the temporal patterning of synchronized dynamics (even if the average synchrony strength is not changed). Larger values of local synaptic connections promote longer desynchronization durations, while larger values of long-range synaptic connections promote shorter desynchronization durations. Furthermore, we show that circuits with different temporal patterning of synchronization may have different sensitivity to synaptic input. Thus, the alterations of synaptic strength may mediate physiological properties of neural circuits not only through change in the average synchrony level of gamma oscillations, but also through change in how synchrony is patterned in time over very short time scales.
γ频段神经活动的同步与多种认知现象相关。γ同步异常可能是精神分裂症和自闭症谱系障碍等几种神经和精神疾病症状的基础。γ频段神经振荡的特性关键取决于基础回路的突触特性。本研究探讨了锥体细胞-中间神经元回路中的突触特性如何不仅影响平均同步强度,还影响神经同步的精细时间模式。如果两个信号仅显示适度的同步强度,则有可能将这些动态视为在同步和去同步状态之间交替。我们使用一个产生锥体细胞-中间神经元γ振荡的连接回路模型来探索同步和去同步间隔的时间模式。突触强度的变化可能会改变同步动态的时间模式(即使平均同步强度不变)。局部突触连接值越大,去同步持续时间越长,而远程突触连接值越大,去同步持续时间越短。此外,我们表明,具有不同同步时间模式的回路可能对突触输入具有不同的敏感性。因此,突触强度的改变可能不仅通过γ振荡平均同步水平的变化,还通过在非常短的时间尺度上同步如何随时间模式化的变化来介导神经回路的生理特性。