Suppr超能文献

使用在 COVID-19 大流行期间在英国采样的 1068391 条序列的等位基因频率比较两种健身推断方案。

Two fitness inference schemes compared using allele frequencies from 1068 391 sequences sampled in the UK during the COVID-19 pandemic.

机构信息

School of Science, Nanjing University of Posts and Telecommunications, Key Laboratory of Radio and Micro-Nano Electronics of Jiangsu Province, Nanjing 210023, People's Republic of China.

Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, United States of America.

出版信息

Phys Biol. 2024 Nov 21;22(1). doi: 10.1088/1478-3975/ad9213.

Abstract

Throughout the course of the SARS-CoV-2 pandemic, genetic variation has contributed to the spread and persistence of the virus. For example, various mutations have allowed SARS-CoV-2 to escape antibody neutralization or to bind more strongly to the receptors that it uses to enter human cells. Here, we compared two methods that estimate the fitness effects of viral mutations using the abundant sequence data gathered over the course of the pandemic. Both approaches are grounded in population genetics theory but with different assumptions. One approach, tQLE, features an epistatic fitness landscape and assumes that alleles are nearly in linkage equilibrium. Another approach, MPL, assumes a simple, additive fitness landscape, but allows for any level of correlation between alleles. We characterized differences in the distributions of fitness values inferred by each approach and in the ranks of fitness values that they assign to sequences across time. We find that in a large fraction of weeks the two methods are in good agreement as to their top-ranked sequences, i.e. as to which sequences observed that week are most fit. We also find that agreement between the ranking of sequences varies with genetic unimodality in the population in a given week.

摘要

在 SARS-CoV-2 大流行期间,遗传变异促成了病毒的传播和持续存在。例如,各种突变使 SARS-CoV-2 能够逃避抗体中和,或者更紧密地结合它用来进入人体细胞的受体。在这里,我们比较了两种使用大流行期间收集的丰富序列数据估计病毒突变适应性影响的方法。这两种方法都基于群体遗传学理论,但有不同的假设。一种方法 tQLE 具有上位性适应景观,并假设等位基因几乎处于连锁平衡状态。另一种方法 MPL 假设简单的、加性适应景观,但允许等位基因之间存在任意水平的相关性。我们描述了每种方法推断的适应值分布的差异,以及它们在整个时间内对序列赋予的适应值等级的差异。我们发现,在很大一部分周中,这两种方法在其最佳序列的排名上是一致的,即本周观察到的哪些序列最适应。我们还发现,序列排名的一致性随着特定周中群体的遗传单峰性而变化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验