Wahl Thorsten B, Han Bo, Béri Benjamin
DAMTP, University of Cambridge, Cambridge, UK.
Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel.
Nat Commun. 2024 Nov 13;15(1):9845. doi: 10.1038/s41467-024-54086-4.
Time crystals are a dynamical phase of periodically driven quantum many-body systems where discrete time-translation symmetry is broken spontaneously. Time-crystallinity however subtly requires also spatial order, ordinarily related to further symmetries, such as spin-flip symmetry when the spatial order is ferromagnetic. Here we define topologically ordered time crystals, a time-crystalline phase borne out of intrinsic topological order-a particularly robust form of spatial order that requires no symmetry. We show that many-body localization can stabilize this phase against generic perturbations and establish some of its key features and signatures, including a dynamical, time-crystal form of the perimeter law for topological order. We link topologically ordered and ordinary time crystals through three complementary perspectives: higher-form symmetries, quantum error-correcting codes, and a holographic correspondence. Topologically ordered time crystals may be realized in programmable quantum devices, as we illustrate for the Google Sycamore processor.
时间晶体是周期性驱动的量子多体系统的一种动力学相,其中离散时间平移对称性会自发破缺。然而,时间晶体性微妙地还需要空间序,通常这与进一步的对称性相关,比如当空间序为铁磁序时的自旋翻转对称性。在这里,我们定义拓扑有序时间晶体,这是一种由内在拓扑序产生的时间晶相——一种特别稳健的空间序形式,它不需要对称性。我们表明,多体局域化可以使这个相抵御一般微扰,并确定其一些关键特征和标志,包括拓扑序的动力学、时间晶体形式的周长定律。我们通过三个互补的视角将拓扑有序时间晶体和普通时间晶体联系起来:高阶对称性、量子纠错码以及全息对应。拓扑有序时间晶体可以在可编程量子设备中实现,正如我们针对谷歌悬铃木处理器所展示的那样。