文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

个体化、疾病阶段特异性、快速识别脓毒症免疫抑制。

Personalized, disease-stage specific, rapid identification of immunosuppression in sepsis.

机构信息

Laboratory of Basic Health Sciences, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, Tripoli, Greece.

Center for Global Health-Division of Infectious Diseases, School of Medicine, University of New Mexico, Albuquerque, NM, United States.

出版信息

Front Immunol. 2024 Oct 29;15:1430972. doi: 10.3389/fimmu.2024.1430972. eCollection 2024.


DOI:10.3389/fimmu.2024.1430972
PMID:39539549
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11558526/
Abstract

INTRODUCTION: Data overlapping of different biological conditions prevents personalized medical decision-making. For example, when the neutrophil percentages of surviving septic patients overlap with those of non-survivors, no individualized assessment is possible. To ameliorate this problem, an immunological method was explored in the context of sepsis. METHODS: Blood leukocyte counts and relative percentages as well as the serum concentration of several proteins were investigated with 4072 longitudinal samples collected from 331 hospitalized patients classified as septic (n=286), non-septic (n=43), or not assigned (n=2). Two methodological approaches were evaluated: (i) a reductionist alternative, which analyzed variables in isolation; and (ii) a non-reductionist version, which examined interactions among six (leukocyte-, bacterial-, temporal-, personalized-, population-, and outcome-related) dimensions. RESULTS: The reductionist approach did not distinguish outcomes: the leukocyte and serum protein data of survivors and non-survivors overlapped. In contrast, the non-reductionist alternative differentiated several data groups, of which at least one was only composed of survivors (a finding observable since hospitalization day 1). Hence, the non-reductionist approach promoted personalized medical practices: every patient classified within a subset associated with 100% survival subset was likely to survive. The non-reductionist method also revealed five inflammatory or disease-related stages (provisionally named 'early inflammation, early immunocompetence, intermediary immuno-suppression, late immuno-suppression, or other'). Mortality data validated these labels: both 'suppression' subsets revealed 100% mortality, the 'immunocompetence' group exhibited 100% survival, while the remaining sets reported two-digit mortality percentages. While the 'intermediary' suppression expressed an impaired monocyte-related function, the 'late' suppression displayed renal-related dysfunctions, as indicated by high concentrations of urea and creatinine. DISCUSSION: The data-driven differentiation of five data groups may foster early and non-overlapping biomedical decision-making, both upon admission and throughout their hospitalization. This approach could evaluate therapies, at personalized level, earlier. To ascertain repeatability and investigate the dynamics of the 'other' group, additional studies are recommended.

摘要

简介:不同生物学条件的数据重叠会妨碍个体化医疗决策。例如,当存活的脓毒症患者的中性粒细胞百分比与非存活者重叠时,就无法进行个体化评估。为了改善这一问题,在脓毒症背景下探索了一种免疫学方法。

方法:对 331 名住院患者的 4072 份纵向样本进行了血液白细胞计数和相对百分比以及几种蛋白质的血清浓度检测,这些患者被分为脓毒症(n=286)、非脓毒症(n=43)或未分类(n=2)。评估了两种方法学方法:(i)一种简化的替代方法,分析孤立变量;(ii)一种非简化的方法,检查六个(白细胞、细菌、时间、个体化、人群和结局相关)维度之间的相互作用。

结果:简化方法不能区分结局:幸存者和非幸存者的白细胞和血清蛋白数据重叠。相比之下,非简化方法则区分了几个数据组,其中至少有一个仅由幸存者组成(从住院第 1 天开始就可以观察到这一发现)。因此,非简化方法促进了个体化医疗实践:每个被归类为与 100%生存亚组相关的亚组中的患者都可能存活。非简化方法还揭示了五个炎症或疾病相关阶段(暂命名为“早期炎症、早期免疫能力、中期免疫抑制、晚期免疫抑制或其他”)。死亡率数据验证了这些标签:两个“抑制”亚组均显示 100%死亡率,“免疫能力”组显示 100%存活率,而其余组报告的死亡率百分比为两位数。虽然“中期”抑制表达了受损的单核细胞相关功能,但“晚期”抑制显示了与肾功能相关的功能障碍,这表现为尿素和肌酐浓度升高。

讨论:基于数据的五个数据组的区分可能会促进入院时和住院期间早期且不重叠的生物医学决策。这种方法可以更早地评估个体化治疗。为了确定可重复性并研究“其他”组的动态,建议进行更多的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f3/11558526/d3390c604fe6/fimmu-15-1430972-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f3/11558526/1df443fbd3d6/fimmu-15-1430972-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f3/11558526/f24aea4a794d/fimmu-15-1430972-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f3/11558526/6066e5bd81c2/fimmu-15-1430972-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f3/11558526/a8c7912b749c/fimmu-15-1430972-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f3/11558526/8d5c949ec400/fimmu-15-1430972-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f3/11558526/1181d3e101e8/fimmu-15-1430972-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f3/11558526/1f10ef63228a/fimmu-15-1430972-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f3/11558526/dcd8d59bba34/fimmu-15-1430972-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f3/11558526/ae6bc1519116/fimmu-15-1430972-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f3/11558526/e39c4c192e7b/fimmu-15-1430972-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f3/11558526/b9c03e229518/fimmu-15-1430972-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f3/11558526/498ae72b690b/fimmu-15-1430972-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f3/11558526/d3390c604fe6/fimmu-15-1430972-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f3/11558526/1df443fbd3d6/fimmu-15-1430972-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f3/11558526/f24aea4a794d/fimmu-15-1430972-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f3/11558526/6066e5bd81c2/fimmu-15-1430972-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f3/11558526/a8c7912b749c/fimmu-15-1430972-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f3/11558526/8d5c949ec400/fimmu-15-1430972-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f3/11558526/1181d3e101e8/fimmu-15-1430972-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f3/11558526/1f10ef63228a/fimmu-15-1430972-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f3/11558526/dcd8d59bba34/fimmu-15-1430972-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f3/11558526/ae6bc1519116/fimmu-15-1430972-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f3/11558526/e39c4c192e7b/fimmu-15-1430972-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f3/11558526/b9c03e229518/fimmu-15-1430972-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f3/11558526/498ae72b690b/fimmu-15-1430972-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f3/11558526/d3390c604fe6/fimmu-15-1430972-g013.jpg

相似文献

[1]
Personalized, disease-stage specific, rapid identification of immunosuppression in sepsis.

Front Immunol. 2024

[2]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[3]
The asynchronous dynamic changes and interrelationships between leukocyte composition and inflammatory markers and potential clinical significance in the early stage and sepsis stage in severe burns.

Burns. 2024-9

[4]
Multi-Cellular Immunological Interactions Associated With COVID-19 Infections.

Front Immunol. 2022

[5]
Detecting the Hidden Properties of Immunological Data and Predicting the Mortality Risks of Infectious Syndromes.

Front Immunol. 2016-6-10

[6]
Early natural killer cell counts in blood predict mortality in severe sepsis.

Crit Care. 2011-10-21

[7]
Prognostic Value of Dynamic Monitoring of Cellular Immunity and HMGB1 in Severe Sepsis: Delayed Chronic Inflammation may be the Leading Cause of Death in Late Severe Sepsis.

Clin Lab. 2016-12-1

[8]
Circulating Monocyte Counts and its Impact on Outcomes in Patients With Severe Sepsis Including Septic Shock.

Shock. 2019-4

[9]
Early B lymphocyte subsets in blood predict prognosis in sepsis.

Front Immunol. 2024

[10]
Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.

J Vis Exp. 2023-5-26

本文引用的文献

[1]
Decoding Immuno-Competence: A Novel Analysis of Complete Blood Cell Count Data in COVID-19 Outcomes.

Biomedicines. 2024-4-15

[2]
Application of AI in Sepsis: Citation Network Analysis and Evidence Synthesis.

Interact J Med Res. 2024-4-15

[3]
Immunomodulatory drugs in sepsis: a systematic review and meta-analysis.

Anaesthesia. 2024-8

[4]
Optimizing artificial intelligence in sepsis management: Opportunities in the present and looking closely to the future.

J Intensive Med. 2023-11-29

[5]
Immunosuppression in Sepsis: Biomarkers and Specialized Pro-Resolving Mediators.

Biomedicines. 2024-1-13

[6]
Immune dysregulation in sepsis: experiences, lessons and perspectives.

Cell Death Discov. 2023-12-19

[7]
Clinical practice of sepsis-induced immunosuppression: Current immunotherapy and future options.

Chin J Traumatol. 2024-3

[8]
From numbers to medical knowledge: harnessing combinatorial data patterns to predict COVID-19 resource needs and distinguish patient subsets.

Front Med (Lausanne). 2023-11-8

[9]
Predicting sepsis using deep learning across international sites: a retrospective development and validation study.

EClinicalMedicine. 2023-8-11

[10]
Sepsis-mediated renal dysfunction: Pathophysiology, biomarkers and role of phytoconstituents in its management.

Biomed Pharmacother. 2023-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索