Hu Peilei, Zhang Wei, Nottingham Andrew T, Xiao Dan, Kuzyakov Yakov, Xu Lin, Chen Hongsong, Xiao Jun, Duan Pengpeng, Tang Tiangang, Zhao Jie, Wang Kelin
Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
Huanjiang Agriculture Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China.
Environ Sci Technol. 2024 Dec 3;58(48):21186-21199. doi: 10.1021/acs.est.4c07264. Epub 2024 Nov 14.
Microbial carbon (C) use efficiency (CUE) drives soil C formation, while physical-chemical protection stabilizes subsequent microbial necromass, both shaped by soil aggregates and minerals. Soils inherit many properties from the parent material, yet the influence of lithology and associated soil geochemistry on microbial CUE and necromass stabilization remains unknow. Here, we quantified microbial CUE in well-aggregated bulk soils and crushed aggregates, as well as microbial necromass in bulk soils and the mineral-associated organic matter fraction, originating from carbonate-containing (karst) and carbonate-free (clastic rock, nonkarst) parent materials along a broad climatic gradient. We found that aggregate crushing significantly increased microbial CUE in both karst and nonkarst soils. Additionally, compared to nonkarst soils, calcium-rich karst soils increased macroaggregate stability and decreased the ratio of oligotrophic to copiotrophic microbial taxa, leading to a reduction in microbial CUE. Moreover, microbial CUE was negatively associated with iron (hydr)oxides in karst soils, attributed to the greater abundance of iron (hydr)oxides and higher soil pH. Despite the negative effects of soil aggregation and minerals on microbial CUE, particularly in karst soils, these soils concurrently showed greater microbial necromass stability through organo-mineral associations compared to nonkarst soils. Consequently, (i) bedrock lithology mediates the effects of aggregates and minerals on microbial CUE and necromass stability; and (ii) balancing minerals' dual roles in diminishing microbial CUE and enhancing microbial necromass stability is vital for optimizing soil C preservation.
微生物碳(C)利用效率(CUE)驱动土壤碳的形成,而物理化学保护作用则使随后的微生物残体得以稳定,这两者均受土壤团聚体和矿物质的影响。土壤继承了母质的许多特性,然而岩性及相关土壤地球化学对微生物CUE和残体稳定性的影响仍不清楚。在此,我们对源自含碳酸盐(岩溶)和不含碳酸盐(碎屑岩、非岩溶)母质且沿广泛气候梯度分布的团聚良好的原状土和破碎团聚体中的微生物CUE进行了量化,同时还对原状土以及与矿物相关的有机质组分中的微生物残体进行了量化。我们发现,团聚体破碎显著提高了岩溶土和非岩溶土中的微生物CUE。此外,与非岩溶土相比,富含钙的岩溶土提高了大团聚体稳定性,并降低了贫营养型与富营养型微生物类群的比例,导致微生物CUE降低。此外,岩溶土中的微生物CUE与铁(氢)氧化物呈负相关,这归因于铁(氢)氧化物含量较高以及土壤pH值较高。尽管土壤团聚体和矿物质对微生物CUE有负面影响,尤其是在岩溶土中,但与非岩溶土相比,这些土壤通过有机-矿物结合同时表现出更高的微生物残体稳定性。因此,(i)基岩岩性介导了团聚体和矿物质对微生物CUE和残体稳定性的影响;(ii)平衡矿物质在降低微生物CUE和增强微生物残体稳定性方面的双重作用对于优化土壤碳的保存至关重要。