Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, People's Republic of China.
Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA.
Glob Chang Biol. 2024 Oct;30(10):e17552. doi: 10.1111/gcb.17552.
Understanding the fate of organic carbon in thawed permafrost is crucial for predicting climate feedback. While minerals and microbial necromass are known to play crucial roles in the long-term stability of organic carbon in subsoils, their exact influence on carbon persistence in Arctic permafrost remains uncertain. Our study, combining radiocarbon dating and biomarker analyses, showed that soil organic carbon in Alaskan permafrost had millennial-scale radiocarbon ages and contained only 10%-15% microbial necromass carbon, significantly lower than the global average of ~30%-60%. This ancient carbon exhibited a weak correlation with reactive minerals but a stronger correlation with mineral weathering (reactive iron to total iron ratio). Peroxidase activity displayed a high correlation coefficient (p < 10) with ΔC and δC, indicating its strong predictive power for carbon persistence. Further, a positive correlation between peroxidase activity and polysaccharides indicates that increased peroxidase activity may promote the protection of plant residues, potentially by fostering the formation of mineral-organic associations. This protective role of mineral surfaces on biopolymers was further supported by examining 1451 synchrotron radiation infrared spectra from soil aggregates, which revealed a strong correlation between mineral OH groups and organic functional groups at the submicron scale. An incubation experiment revealed that increased moisture contents, particularly within the 0%-40% range, significantly elevated peroxidase activity, suggesting that ancient carbon in permafrost soils is vulnerable to moisture-induced destabilization. Collectively, this study offers mechanistic insights into the persistence of carbon in thawed permafrost soils, essential for refining permafrost carbon-climate feedbacks.
了解解冻永久冻土中有机碳的命运对于预测气候反馈至关重要。虽然矿物质和微生物残体被认为在亚土壤中有机碳的长期稳定性中起着至关重要的作用,但它们对北极永久冻土中碳持久性的确切影响仍不确定。我们的研究结合放射性碳测年和生物标志物分析表明,阿拉斯加永久冻土中的土壤有机碳具有千年尺度的放射性碳年龄,并且只含有 10%-15%的微生物残体碳,明显低于全球平均水平的~30%-60%。这种古老的碳与反应性矿物质相关性较弱,但与矿物质风化(反应性铁与总铁比)相关性较强。过氧化物酶活性与ΔC 和 δC 呈高度相关系数(p<0.01),表明其对碳持久性具有很强的预测能力。此外,过氧化物酶活性与多糖之间呈正相关,表明过氧化物酶活性的增加可能促进植物残体的保护,可能通过促进矿物质-有机化合物的形成来实现。通过检查来自土壤团聚体的 1451 个同步辐射红外光谱,进一步证实了矿物质表面对生物聚合物的这种保护作用,这表明在亚微米尺度上矿物质 OH 基团与有机官能团之间存在强烈相关性。一项培养实验表明,水分含量的增加,特别是在 0%-40%范围内,显著提高了过氧化物酶活性,这表明永久冻土土壤中的古老碳容易受到水分诱导的不稳定性的影响。总的来说,这项研究为解冻永久冻土土壤中碳的持久性提供了机制上的见解,对于完善永久冻土碳-气候反馈至关重要。