Bopche Rajeev, Gustad Lise Tuset, Afset Jan Egil, Ehrnström Birgitta, Damås Jan Kristian, Nytrø Øystein
Department of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway.
Faculty of Nursing and Health Sciences, Nord University, Levanger, Norway.
PLOS Digit Health. 2024 Nov 14;3(11):e0000506. doi: 10.1371/journal.pdig.0000506. eCollection 2024 Nov.
Bloodstream infections (BSIs) are a severe public health threat due to their rapid progression into critical conditions like sepsis. This study presents a novel eXplainable Artificial Intelligence (XAI) framework to predict BSIs using historical electronic health records (EHRs). Leveraging a dataset from St. Olavs Hospital in Trondheim, Norway, encompassing 35,591 patients, the framework integrates demographic, laboratory, and comprehensive medical history data to classify patients into high-risk and low-risk BSI groups. By avoiding reliance on real-time clinical data, our model allows for enhanced scalability across various healthcare settings, including resource-limited environments. The XAI framework significantly outperformed traditional models, particularly with tree-based algorithms, demonstrating superior specificity and sensitivity in BSI prediction. This approach promises to optimize resource allocation and potentially reduce healthcare costs while providing interpretability for clinical decision-making, making it a valuable tool in hospital systems for early intervention and improved patient outcomes.
血流感染(BSIs)因其迅速发展为脓毒症等危急状况而对公众健康构成严重威胁。本研究提出了一种新颖的可解释人工智能(XAI)框架,用于利用历史电子健康记录(EHRs)预测血流感染。该框架利用挪威特隆赫姆市圣奥拉夫医院的数据集,涵盖35591名患者,整合了人口统计学、实验室和全面病史数据,将患者分为血流感染高风险组和低风险组。通过避免依赖实时临床数据,我们的模型能够在包括资源有限环境在内的各种医疗环境中增强可扩展性。XAI框架显著优于传统模型,特别是基于树的算法,在血流感染预测中表现出更高的特异性和敏感性。这种方法有望优化资源分配并潜在降低医疗成本,同时为临床决策提供可解释性,使其成为医院系统中早期干预和改善患者预后的宝贵工具。