Suppr超能文献

用于 1 小时提前太阳紫外线指数预测的增强型关节混合深度神经网络可解释人工智能模型。

Enhanced joint hybrid deep neural network explainable artificial intelligence model for 1-hr ahead solar ultraviolet index prediction.

机构信息

School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, QLD 4300, Australia.

School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, QLD 4300, Australia; Department of Signal Processing and Communications, Universidad de Alcalá, Alcalá de Henares, 28805, Madrid, Spain.

出版信息

Comput Methods Programs Biomed. 2023 Nov;241:107737. doi: 10.1016/j.cmpb.2023.107737. Epub 2023 Aug 5.

Abstract

BACKGROUND AND OBJECTIVE

Exposure to solar ultraviolet (UV) radiation can cause malignant keratinocyte cancer and eye disease. Developing a user-friendly, portable, real-time solar UV alert system especially or wearable electronic mobile devices can help reduce the exposure to UV as a key measure for personal and occupational management of the UV risks. This research aims to design artificial intelligence-inspired early warning tool tailored for short-term forecasting of UV index (UVI) integrating satellite-derived and ground-based predictors for Australian hotspots receiving high UV exposures. The study further improves the trustworthiness of the newly designed tool using an explainable artificial intelligence approach.

METHODS

An enhanced joint hybrid explainable deep neural network model (called EJH-X-DNN) is constructed involving two phases of feature selection and hyperparameter tuning using Bayesian optimization. A comprehensive assessment of EJH-X- DNN is conducted with six other competing benchmarked models. The proposed model is explained locally and globally using robust model-agnostic explainable artificial intelligence frameworks such as Local Interpretable Model-Agnostic Explanations (LIME), Shapley additive explanations (SHAP), and permutation feature importance (PFI).

RESULTS

The newly proposed model outperformed all benchmarked models for forecasting hourly horizons UVI, with correlation coefficients of 0.900, 0.960, 0.897, and 0.913, respectively, for Darwin, Alice Springs, Townsville, and Emerald hotspots. According to the combined local and global explainable model outcomes, the site-based results indicate that antecedent lagged memory of UVI and solar zenith angle are influential features. Predictions made by EJH-X-DNN model are strongly influenced by factors such as ozone effect, cloud conditions, and precipitation.

CONCLUSION

With its superiority and skillful interpretation, the UVI prediction system reaffirms its benefits for providing real-time UV alerts to mitigate risks of skin and eye health complications, reducing healthcare costs and contributing to outdoor exposure policy.

摘要

背景与目的

暴露于太阳紫外线(UV)辐射会导致恶性角质形成细胞癌和眼部疾病。开发一个用户友好、便携、实时的太阳 UV 警报系统,特别是可穿戴电子移动设备,可以帮助减少紫外线暴露,作为个人和职业管理紫外线风险的关键措施。本研究旨在设计一种受人工智能启发的预警工具,针对澳大利亚高紫外线暴露热点地区的短期紫外线指数(UVI)进行预测,该工具整合了卫星衍生和地面预测因子。本研究进一步使用可解释人工智能方法提高新设计工具的可信度。

方法

构建了一个增强的联合混合可解释深度神经网络模型(称为 EJH-X-DNN),该模型涉及使用贝叶斯优化进行特征选择和超参数调整的两个阶段。使用六种其他竞争基准模型对 EJH-X-DNN 进行了全面评估。使用稳健的模型不可知可解释人工智能框架(如局部可解释模型不可知解释(LIME)、Shapley 加性解释(SHAP)和排列特征重要性(PFI))对提出的模型进行局部和全局解释。

结果

新提出的模型在预测小时 UVI 方面优于所有基准模型,达尔文、爱丽丝泉、汤斯维尔和埃默拉尔德热点的相关系数分别为 0.900、0.960、0.897 和 0.913。根据组合的局部和全局可解释模型结果,现场结果表明,紫外线指数和太阳天顶角的滞后记忆是有影响的特征。EJH-X-DNN 模型的预测受到臭氧效应、云条件和降水等因素的强烈影响。

结论

该 UVI 预测系统凭借其优越性和熟练的解释,证实了其为提供实时紫外线警报以减轻皮肤和眼睛健康并发症风险、降低医疗成本和促进户外暴露政策带来的好处。

相似文献

6
Toward explainable AI-empowered cognitive health assessment.迈向可解释人工智能赋能的认知健康评估。
Front Public Health. 2023 Mar 9;11:1024195. doi: 10.3389/fpubh.2023.1024195. eCollection 2023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验