Yao Zhibo, Cheng Hao, Xu Yifei, Zhan Xinyu, Hong Song, Tan Xinyi, Wu Tai-Sing, Xiong Pei, Soo Yun-Liang, Li Molly Meng-Jung, Hao Leiduan, Xu Liang, Robertson Alex W, Xu Bingjun, Yang Ming, Sun Zhenyu
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, PR China.
Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, PR China.
Nat Commun. 2024 Nov 14;15(1):9881. doi: 10.1038/s41467-024-53529-2.
The electrocatalytic reduction of CO to CO is slowed by the energy cost of the hydrogenation step that yields adsorbed *COOH intermediate. Here, we report a hydrogen radical (H•)-transfer mechanism that aids this hydrogenation step, enabled by constructing Ni-partnered hetero-diatomic pairs, and thereby greatly enhancing CO-to-CO conversion kinetics. The partner metal to the Ni (denoted as M) catalyzes the Volmer step of the water/proton reduction to generate adsorbed *H, turning to H•, which reduces CO to carboxyl radicals (•COOH). The Ni partner then subsequently adsorbs the •COOH in an exothermic reaction, negating the usual high energy-penalty for the electrochemical hydrogenation of CO. Tuning the H adsorption strength of the M site (with Cd, Pt, or Pd) allows for the optimization of H• formation, culminating in a markedly improved CO reduction rate toward CO production, offering 97.1% faradaic efficiency (FE) in aqueous electrolyte and up to 100.0% FE in an ionic liquid solution.
将CO电催化还原为CO会因生成吸附态COOH中间体的氢化步骤的能量成本而减慢。在此,我们报道了一种氢自由基(H•)转移机制,该机制通过构建与镍配对的异双原子对来辅助这一氢化步骤,从而极大地提高了CO到CO的转化动力学。与镍配对的金属(记为M)催化水/质子还原的Volmer步骤以生成吸附态H,*H转化为H•,H•将CO还原为羧基自由基(•COOH)。然后,镍配对物随后通过放热反应吸附•COOH,消除了CO电化学氢化通常所需的高能量代价。调节M位点(使用Cd、Pt或Pd)的H吸附强度可优化H•的形成,最终显著提高CO还原生成CO的速率,在水性电解质中提供97.1%的法拉第效率(FE),在离子液体溶液中高达100.0%的FE。