Suppr超能文献

温度、营养物质和生长率对整个大西洋浮游植物细胞大小的影响。

Effect of temperature, nutrients and growth rate on picophytoplankton cell size across the Atlantic Ocean.

机构信息

Centro de Investigación Marina and Facultad de Ciencias del Mar, Universidade de Vigo, Vigo, Spain.

Plymouth Marine Laboratory, Plymouth, UK.

出版信息

Sci Rep. 2024 Nov 14;14(1):28034. doi: 10.1038/s41598-024-78951-w.

Abstract

The cell size of picophytoplankton populations affects their ecology and biogeochemical role, but how different environmental drivers control its variability is still not well understood. To gain insight into the role of temperature and nutrient availability as determinants of picophytoplankton population mean cell size, we carried out five microcosm experiments across the Atlantic Ocean (45°N-27°S) in which surface plankton assemblages were incubated under all combinations of three temperatures (in situ, 3 °C cooling and 3 °C warming) and two nutrient levels (unamended and addition of nitrogen and phosphorus). The overall range of variability in cell volume was 5-fold for Prochlorococcus, 8-fold for Synechococcus and 6-fold for the picoeukaryotes. We observed, in all the treatments and in the control, a consistent trend toward larger mean cell sizes over time for both Prochlorococcus and Synechococcus, which was likely the result of sample confinement. Changes in temperature and nutrient status alone did not cause clear changes in cell size, relative to the control, but the combination of warming and nutrient addition resulted in an increase in Prochlorococcus and Synechococcus cell size. The largest increases in cell volume were associated with slow or negative population net growth rates. Our results emphasize the importance of considering changes in biovolume to obtain accurate estimates of picophytoplankton biomass and suggest that the inverse relationship between growth rate and population mean cell size may be a general pattern in marine phytoplankton.

摘要

微微型浮游植物种群的细胞大小会影响其生态学和生物地球化学作用,但不同环境驱动因素如何控制其可变性仍不清楚。为了深入了解温度和营养供应作为决定微微型浮游植物种群平均细胞大小的因素的作用,我们在整个大西洋(45°N-27°S)进行了五项微宇宙实验,其中表层浮游生物组合在三种温度(原位、3°C 冷却和 3°C 升温)和两种营养水平(未添加和添加氮和磷)的所有组合下进行了培养。体积的整体变化范围为 5 倍的原绿球藻、8 倍的聚球藻和 6 倍的微微型真核生物。我们观察到,在所有处理和对照中,原绿球藻和聚球藻的平均细胞大小随着时间的推移都呈现出一致的增大趋势,这可能是由于样品限制造成的。温度和营养状况的变化本身并没有导致细胞大小相对于对照发生明显变化,但增温和营养添加的组合导致了原绿球藻和聚球藻细胞大小的增加。细胞体积的最大增加与种群净生长率缓慢或为负有关。我们的结果强调了考虑生物量变化以获得准确的微微型浮游植物生物量估计的重要性,并表明生长速率与种群平均细胞大小之间的反比关系可能是海洋浮游植物的一般模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5310/11564571/be486be2a5dc/41598_2024_78951_Fig1_HTML.jpg

相似文献

2
Picophytoplankton size and biomass around equatorial eastern Indian Ocean.
Microbiologyopen. 2019 Feb;8(2):e00629. doi: 10.1002/mbo3.629. Epub 2018 Apr 15.
4
Water column stratification governs picophytoplankton community structure in the oligotrophic eastern Indian ocean.
Mar Environ Res. 2023 Jul;189:106074. doi: 10.1016/j.marenvres.2023.106074. Epub 2023 Jun 26.
5
Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean.
ISME J. 2016 Feb;10(2):500-13. doi: 10.1038/ismej.2015.130. Epub 2015 Aug 11.
6
Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus.
Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9824-9. doi: 10.1073/pnas.1307701110. Epub 2013 May 23.
8
Seasonal variability of picophytoplankton under contrasting environments in northern Tunisian coasts, southwestern Mediterranean Sea.
Mar Pollut Bull. 2018 Apr;129(2):866-874. doi: 10.1016/j.marpolbul.2017.10.029. Epub 2017 Oct 15.
9
Coexistence of Dominant Marine Phytoplankton Sustained by Nutrient Specialization.
Microbiol Spectr. 2023 Aug 17;11(4):e0400022. doi: 10.1128/spectrum.04000-22. Epub 2023 Jul 17.
10
Picophytoplankton in the West Pacific Ocean: A Snapshot.
Front Microbiol. 2022 Mar 22;13:811227. doi: 10.3389/fmicb.2022.811227. eCollection 2022.

本文引用的文献

1
2
Intraspecific trait variation modulates the temperature effect on elemental quotas and stoichiometry in marine Synechococcus.
PLoS One. 2024 Mar 18;19(3):e0292337. doi: 10.1371/journal.pone.0292337. eCollection 2024.
3
Global analysis of ocean phytoplankton nutrient limitation reveals high prevalence of co-limitation.
Nat Commun. 2023 Aug 17;14(1):5014. doi: 10.1038/s41467-023-40774-0.
6
Seasonality of Coastal Picophytoplankton Growth, Nutrient Limitation, and Biomass Contribution.
Front Microbiol. 2021 Dec 6;12:786590. doi: 10.3389/fmicb.2021.786590. eCollection 2021.
7
Changes in Population Age-Structure Obscure the Temperature-Size Rule in Marine Cyanobacteria.
Front Microbiol. 2020 Aug 28;11:2059. doi: 10.3389/fmicb.2020.02059. eCollection 2020.
8
Seasons of .
Limnol Oceanogr. 2020 May;65(5):1085-1102. doi: 10.1002/lno.11374. Epub 2019 Nov 19.
9
Background nutrient concentration determines phytoplankton bloom response to marine heatwaves.
Glob Chang Biol. 2020 Sep;26(9):4800-4811. doi: 10.1111/gcb.15255. Epub 2020 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验