Suppr超能文献

海洋聚球藻细胞大小的生长依赖性变化、营养供应与细胞元素化学计量之间的相互作用

Interactions between growth-dependent changes in cell size, nutrient supply and cellular elemental stoichiometry of marine Synechococcus.

作者信息

Garcia Nathan S, Bonachela Juan A, Martiny Adam C

机构信息

Department of Earth System Science, University of California, Irvine, CA, USA.

Department of Mathematics and Statistics, University of Strathclyde, Glasgow, Scotland, UK.

出版信息

ISME J. 2016 Nov;10(11):2715-2724. doi: 10.1038/ismej.2016.50. Epub 2016 Apr 8.

Abstract

The factors that control elemental ratios within phytoplankton, like carbon:nitrogen:phosphorus (C:N:P), are key to biogeochemical cycles. Previous studies have identified relationships between nutrient-limited growth and elemental ratios in large eukaryotes, but little is known about these interactions in small marine phytoplankton like the globally important Cyanobacteria. To improve our understanding of these interactions in picophytoplankton, we asked how cellular elemental stoichiometry varies as a function of steady-state, N- and P-limited growth in laboratory chemostat cultures of Synechococcus WH8102. By combining empirical data and theoretical modeling, we identified a previously unrecognized factor (growth-dependent variability in cell size) that controls the relationship between nutrient-limited growth and cellular elemental stoichiometry. To predict the cellular elemental stoichiometry of phytoplankton, previous theoretical models rely on the traditional Droop model, which purports that the acquisition of a single limiting nutrient suffices to explain the relationship between a cellular nutrient quota and growth rate. Our study, however, indicates that growth-dependent changes in cell size have an important role in regulating cell nutrient quotas. This key ingredient, along with nutrient-uptake protein regulation, enables our model to predict the cellular elemental stoichiometry of Synechococcus across a range of nutrient-limited conditions. Our analysis also adds to the growth rate hypothesis, suggesting that P-rich biomolecules other than nucleic acids are important drivers of stoichiometric variability in Synechococcus. Lastly, by comparing our data with field observations, our study has important ecological relevance as it provides a framework for understanding and predicting elemental ratios in ocean regions where small phytoplankton like Synechococcus dominates.

摘要

控制浮游植物内元素比例的因素,如碳:氮:磷(C:N:P),是生物地球化学循环的关键。以往的研究已经确定了大型真核生物中营养限制生长与元素比例之间的关系,但对于全球重要的蓝细菌等小型海洋浮游植物中的这些相互作用却知之甚少。为了更好地理解这些在微微型浮游植物中的相互作用,我们研究了在实验室恒化器培养的聚球藻WH8102中,细胞元素化学计量如何随稳态、氮和磷限制生长而变化。通过结合实证数据和理论建模,我们确定了一个先前未被认识到的因素(细胞大小的生长依赖性变化),它控制着营养限制生长与细胞元素化学计量之间的关系。为了预测浮游植物的细胞元素化学计量,以往的理论模型依赖于传统的德鲁普模型,该模型认为获取单一限制营养素就足以解释细胞营养配额与生长速率之间的关系。然而,我们的研究表明,细胞大小随生长的变化在调节细胞营养配额方面具有重要作用。这个关键因素,连同营养吸收蛋白调节,使我们的模型能够预测聚球藻在一系列营养限制条件下的细胞元素化学计量。我们的分析还补充了生长速率假说,表明除核酸外富含磷的生物分子是聚球藻化学计量变化的重要驱动因素。最后,通过将我们的数据与实地观测结果进行比较,我们的研究具有重要的生态意义,因为它为理解和预测以聚球藻等小型浮游植物为主的海洋区域的元素比例提供了一个框架。

相似文献

2
Intraspecific trait variation modulates the temperature effect on elemental quotas and stoichiometry in marine Synechococcus.
PLoS One. 2024 Mar 18;19(3):e0292337. doi: 10.1371/journal.pone.0292337. eCollection 2024.
3
Stoichiometry of Prochlorococcus, Synechococcus, and small eukaryotic populations in the western North Atlantic Ocean.
Environ Microbiol. 2017 Apr;19(4):1568-1583. doi: 10.1111/1462-2920.13672. Epub 2017 Mar 2.
4
Stoichiometric regulation of phytoplankton toxins.
Ecol Lett. 2014 Jun;17(6):736-42. doi: 10.1111/ele.12280. Epub 2014 Apr 8.
5
Elemental composition of natural populations of key microbial groups in Atlantic waters.
Environ Microbiol. 2013 Nov;15(11):3054-64. doi: 10.1111/1462-2920.12145. Epub 2013 May 13.
6
A simple nutrient-dependence mechanism for predicting the stoichiometry of marine ecosystems.
Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):8199-204. doi: 10.1073/pnas.1423917112. Epub 2015 Jun 8.
8
Exudate Stimulates Heterotrophic Bacterial Competition with Rival Phytoplankton for Available Nitrogen.
mBio. 2022 Feb 22;13(1):e0257121. doi: 10.1128/mbio.02571-21. Epub 2022 Jan 11.
9
The impact of surface-adsorbed phosphorus on phytoplankton Redfield stoichiometry.
Nature. 2004 Dec 16;432(7019):897-901. doi: 10.1038/nature03125.
10
Amino Acid Analog Induces Stress Response in Marine .
Appl Environ Microbiol. 2021 Jul 13;87(15):e0020021. doi: 10.1128/AEM.00200-21.

引用本文的文献

1
The role of phytoplankton in structuring global oceanic dissolved organic carbon pools.
Nat Commun. 2025 Aug 20;16(1):7742. doi: 10.1038/s41467-025-63105-x.
2
Effect of sulfate availability on phytoplankton stoichiometry.
J Phycol. 2025 Aug;61(4):895-910. doi: 10.1111/jpy.70053. Epub 2025 Jun 25.
4
Latitudinal patterns in ocean C:N:P reflect phytoplankton acclimation and macromolecular composition.
Proc Natl Acad Sci U S A. 2024 Nov 12;121(46):e2404460121. doi: 10.1073/pnas.2404460121. Epub 2024 Nov 5.
5
Microbial ecology of northern Gulf of Mexico estuarine waters.
mSystems. 2024 Aug 20;9(8):e0131823. doi: 10.1128/msystems.01318-23. Epub 2024 Jul 9.
7
Intraspecific trait variation modulates the temperature effect on elemental quotas and stoichiometry in marine Synechococcus.
PLoS One. 2024 Mar 18;19(3):e0292337. doi: 10.1371/journal.pone.0292337. eCollection 2024.
8
Global patterns in marine organic matter stoichiometry driven by phytoplankton ecophysiology.
Nat Geosci. 2022;15(12):1034-1040. doi: 10.1038/s41561-022-01066-2. Epub 2022 Nov 21.
9
Saturating relationship between phytoplankton growth rate and nutrient concentration explained by macromolecular allocation.
Curr Res Microb Sci. 2022 Sep 21;3:100167. doi: 10.1016/j.crmicr.2022.100167. eCollection 2022.
10
Global patterns and predictors of C:N:P in marine ecosystems.
Commun Earth Environ. 2022;3(1):271. doi: 10.1038/s43247-022-00603-6. Epub 2022 Nov 7.

本文引用的文献

1
A simple nutrient-dependence mechanism for predicting the stoichiometry of marine ecosystems.
Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):8199-204. doi: 10.1073/pnas.1423917112. Epub 2015 Jun 8.
2
Influence of growth rate on the physiological response of marine Synechococcus to phosphate limitation.
Front Microbiol. 2015 Feb 11;6:85. doi: 10.3389/fmicb.2015.00085. eCollection 2015.
3
Growth rate and cell size: a re-examination of the growth law.
Curr Opin Microbiol. 2015 Apr;24:96-103. doi: 10.1016/j.mib.2015.01.011. Epub 2015 Feb 5.
4
5
Accumulation and enhanced cycling of polyphosphate by Sargasso Sea plankton in response to low phosphorus.
Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):8089-94. doi: 10.1073/pnas.1321719111. Epub 2014 Apr 21.
7
Phylogenetic constraints on elemental stoichiometry and resource allocation in heterotrophic marine bacteria.
Environ Microbiol. 2014 May;16(5):1398-410. doi: 10.1111/1462-2920.12329. Epub 2013 Dec 3.
8
Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus.
Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9824-9. doi: 10.1073/pnas.1307701110. Epub 2013 May 23.
9
Ecological genomics of marine picocyanobacteria.
Microbiol Mol Biol Rev. 2009 Jun;73(2):249-99. doi: 10.1128/MMBR.00035-08.
10
Inorganic polyphosphate: essential for growth and survival.
Annu Rev Biochem. 2009;78:605-47. doi: 10.1146/annurev.biochem.77.083007.093039.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验