Garcia Nathan S, Bonachela Juan A, Martiny Adam C
Department of Earth System Science, University of California, Irvine, CA, USA.
Department of Mathematics and Statistics, University of Strathclyde, Glasgow, Scotland, UK.
ISME J. 2016 Nov;10(11):2715-2724. doi: 10.1038/ismej.2016.50. Epub 2016 Apr 8.
The factors that control elemental ratios within phytoplankton, like carbon:nitrogen:phosphorus (C:N:P), are key to biogeochemical cycles. Previous studies have identified relationships between nutrient-limited growth and elemental ratios in large eukaryotes, but little is known about these interactions in small marine phytoplankton like the globally important Cyanobacteria. To improve our understanding of these interactions in picophytoplankton, we asked how cellular elemental stoichiometry varies as a function of steady-state, N- and P-limited growth in laboratory chemostat cultures of Synechococcus WH8102. By combining empirical data and theoretical modeling, we identified a previously unrecognized factor (growth-dependent variability in cell size) that controls the relationship between nutrient-limited growth and cellular elemental stoichiometry. To predict the cellular elemental stoichiometry of phytoplankton, previous theoretical models rely on the traditional Droop model, which purports that the acquisition of a single limiting nutrient suffices to explain the relationship between a cellular nutrient quota and growth rate. Our study, however, indicates that growth-dependent changes in cell size have an important role in regulating cell nutrient quotas. This key ingredient, along with nutrient-uptake protein regulation, enables our model to predict the cellular elemental stoichiometry of Synechococcus across a range of nutrient-limited conditions. Our analysis also adds to the growth rate hypothesis, suggesting that P-rich biomolecules other than nucleic acids are important drivers of stoichiometric variability in Synechococcus. Lastly, by comparing our data with field observations, our study has important ecological relevance as it provides a framework for understanding and predicting elemental ratios in ocean regions where small phytoplankton like Synechococcus dominates.
控制浮游植物内元素比例的因素,如碳:氮:磷(C:N:P),是生物地球化学循环的关键。以往的研究已经确定了大型真核生物中营养限制生长与元素比例之间的关系,但对于全球重要的蓝细菌等小型海洋浮游植物中的这些相互作用却知之甚少。为了更好地理解这些在微微型浮游植物中的相互作用,我们研究了在实验室恒化器培养的聚球藻WH8102中,细胞元素化学计量如何随稳态、氮和磷限制生长而变化。通过结合实证数据和理论建模,我们确定了一个先前未被认识到的因素(细胞大小的生长依赖性变化),它控制着营养限制生长与细胞元素化学计量之间的关系。为了预测浮游植物的细胞元素化学计量,以往的理论模型依赖于传统的德鲁普模型,该模型认为获取单一限制营养素就足以解释细胞营养配额与生长速率之间的关系。然而,我们的研究表明,细胞大小随生长的变化在调节细胞营养配额方面具有重要作用。这个关键因素,连同营养吸收蛋白调节,使我们的模型能够预测聚球藻在一系列营养限制条件下的细胞元素化学计量。我们的分析还补充了生长速率假说,表明除核酸外富含磷的生物分子是聚球藻化学计量变化的重要驱动因素。最后,通过将我们的数据与实地观测结果进行比较,我们的研究具有重要的生态意义,因为它为理解和预测以聚球藻等小型浮游植物为主的海洋区域的元素比例提供了一个框架。