Al-Otaibi Najwa, Huete-Stauffer Tamara M, Calleja Maria Ll, Irigoien Xabier, Morán Xosé Anxelu G
Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
Department of Climate Geochemistry, Max Planck Institute for Chemistry (MPIC), Mainz, Germany.
PeerJ. 2020 Feb 24;8:e8612. doi: 10.7717/peerj.8612. eCollection 2020.
The Red Sea is characterized by higher temperatures and salinities than other oligotrophic tropical regions. Here, we investigated the vertical and seasonal variations in the abundance and biomass of autotrophic and heterotrophic picoplankton. Using flow cytometry, we consistently observed five groups of autotrophs (, two populations of separated by their relative phycoerythrin fluorescence, low (LF-Syn) and high (HF-Syn), and two differently-sized groups of picoeukaryotes, small (Speuk) and large (Lpeuk)) and two groups of heterotrophic prokaryotes of low and high nucleic acid content (LNA and HNA, respectively). Samples were collected in 15 surveys conducted from 2015 to 2017 at a 700-m depth station in the central Red Sea. Surface temperature ranged from 24.6 to 32.6 °C with a constant value of 21.7 °C below 200 m. Integrated (0-100 m) chlorophyll concentrations were low, with maximum values in fall (24.0 ± 2.7 mg m) and minima in spring and summer (16.1 ± 1.9 and 1.1 mg m, respectively). Picoplankton abundance was generally lower than in other tropical environments. Vertical distributions differed for each group, with and LNA prokaryotes more abundant at the surface while , picoeukaryotes and HNA prokaryotes peaked at the deep chlorophyll maximum, located between 40 and 76 m. Surface to 100 m depth-weighted abundances exhibited clear seasonal patterns for with maxima in summer (7.83 × 10 cells mL, July 2015) and minima in winter (1.39 × 10 cells mL, January 2015). LF-Syn (0.32 - 2.70 × 10 cells mL ), HF-Syn (1.11 - 3.20 × 10 cells mL) and Speuk (0.99 - 4.81 × 10 cells mL) showed an inverse pattern to while Lpeuk (0.16 - 7.05 × 10 cells mL) peaked in fall. unexpectedly outnumbered in winter and at the end of fall. The seasonality of heterotrophic prokaryotes (2.29 - 4.21×10 cells mL ) was less noticeable than autotrophic picoplankton. The contribution of HNA cells was generally low in the upper layers, ranging from 36% in late spring and early summer to ca. 50% in winter and fall. Autotrophs dominated integrated picoplankton biomass in the upper 100 m, with 1.4-fold higher values in summer than in winter (mean 387 and 272 mg C m, respectively). However, when the whole water column was considered, the biomass of heterotrophic prokaryotes exceeded that of autotrophic picoplankton with an average of 411 mg C m. Despite being located in tropical waters, our results show that the picoplankton community seasonal differences in the central Red Sea are not fundamentally different from higher latitude regions.
红海的特点是温度和盐度高于其他贫营养热带地区。在此,我们研究了自养和异养微微型浮游生物丰度和生物量的垂直和季节变化。使用流式细胞仪,我们始终观察到五组自养生物(两组聚球藻通过其相对藻红蛋白荧光区分,低荧光聚球藻(LF-Syn)和高荧光聚球藻(HF-Syn),以及两组不同大小的微微型真核生物,小的(Speuk)和大的(Lpeuk))和两组核酸含量低和高的异养原核生物(分别为LNA和HNA)。样本是在2015年至2017年期间于红海中部一个700米深度站点进行的15次调查中采集的。表层温度范围为24.6至32.6°C,在200米以下恒定为21.7°C。综合(0 - 100米)叶绿素浓度较低,秋季最高(24.0±2.7毫克/立方米),春季和夏季最低(分别为16.1±1.9和1.1毫克/立方米)。微微型浮游生物丰度通常低于其他热带环境。每组的垂直分布不同,聚球藻和LNA原核生物在表层更为丰富,而聚球藻、微微型真核生物和HNA原核生物在40至76米之间的深层叶绿素最大值处达到峰值。表层至100米深度加权丰度显示出聚球藻明显的季节模式,夏季最高(2015年7月,7.83×10⁶细胞/毫升),冬季最低(2015年1月,1.39×10⁶细胞/毫升)。LF-Syn(0.32 - 2.70×10⁵细胞/毫升)、HF-Syn(1.11 - 3.20×10⁵细胞/毫升)和Speuk(0.99 - 4.81×10⁵细胞/毫升)呈现与聚球藻相反的模式,而Lpeuk(0.16 - 7.05×10⁵细胞/毫升)在秋季达到峰值。聚球藻在冬季和秋季末意外地比聚球藻数量更多。异养原核生物(2.29 - 4.21×10⁶细胞/毫升)的季节性不如自养微微型浮游生物明显。HNA细胞在上层的贡献通常较低,从晚春和初夏的36%到冬季和秋季的约50%不等。自养生物在100米上层的综合微微型浮游生物生物量中占主导地位,夏季的值比冬季高1.4倍(分别平均为387和272毫克碳/立方米)。然而,当考虑整个水柱时,异养原核生物的生物量超过了自养微微型浮游生物,平均为411毫克碳/立方米。尽管位于热带水域,但我们的结果表明,红海中部微微型浮游生物群落的季节差异与高纬度地区并无根本不同。