Suppr超能文献

具有双界面相互作用的聚合物空穴传输体助力实现25%效率的刮刀涂布钙钛矿太阳能电池。

A Polymeric Hole Transporter with Dual-Interfacial Interactions Enables 25%-Efficiency Blade-Coated Perovskite Solar Cells.

作者信息

Wang Feifei, Liu Tianxiao, Liu Yangyang, Zhou Yuhan, Dong Xiaorui, Zhang Yaoyao, Shi Xiaoyu, Dou Yunjie, Ren Zhijun, Wang Lingyuan, Zhao Yu, Luo Siwei, Hu Xiaodong, Peng Xiaoxiao, Bao Chunxiong, Wang Wei, Wang Jingyang, Hu Wenbing, Chen Shangshang

机构信息

State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High-Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China.

School of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China.

出版信息

Adv Mater. 2024 Dec;36(52):e2412059. doi: 10.1002/adma.202412059. Epub 2024 Nov 14.

Abstract

Self-assembly monolayer (SAM) hole transporters, consisting of anchoring, spacer, and terminal groups, have played a significant role in the development of inverted perovskite solar cells (PSCs). However, the weak interaction between perovskite and hydrophobic terminal group of SAMs limits surface wettability and interface stability. To address this issue, two novel hole transporters (named DBPP and Poly-DBPP) with centrosymmetric biphosphonic acid groups are developed. Unlike conventional SAM hole transporters, the biphosphonic acid groups in DBPP and Poly-DBPP can anchor to the underlying conductive substrate and interact with the perovskite layer simultaneously, improving surface wettability and suppressing interface recombination. Furthermore, compared to the small-molecular DBPP, Poly-DBPP exhibits higher conductance and excellent uniformity. This translates to a remarkable power conversion efficiency of 25.1% for blade-coated PSCs and 22.0% for large-area modules, respectively. Additionally, the PSCs based on Poly-DBPP demonstrate impressive operational stability, retaining 92% of their initial PCE after 1,600 h of light soaking. This work presents a promising strategy for designing multifunctional hole transporters, paving the way for highly efficient and stable PSCs.

摘要

由锚定基团、间隔基团和末端基团组成的自组装单分子层(SAM)空穴传输材料在倒置钙钛矿太阳能电池(PSC)的发展中发挥了重要作用。然而,钙钛矿与SAMs疏水末端基团之间的弱相互作用限制了表面润湿性和界面稳定性。为了解决这个问题,开发了两种具有中心对称双膦酸基团的新型空穴传输材料(命名为DBPP和聚-DBPP)。与传统的SAM空穴传输材料不同,DBPP和聚-DBPP中的双膦酸基团可以同时锚定到下面的导电基板上并与钙钛矿层相互作用,从而提高表面润湿性并抑制界面复合。此外,与小分子DBPP相比,聚-DBPP表现出更高的电导率和优异的均匀性。这使得刮刀涂布的PSC的功率转换效率分别达到了25.1%,大面积模块的功率转换效率达到了22.0%。此外,基于聚-DBPP的PSC表现出令人印象深刻的运行稳定性,在光照1600小时后仍保留其初始PCE的92%。这项工作提出了一种设计多功能空穴传输材料的有前景的策略,为高效稳定的PSC铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验