Suppr超能文献

开发一种基于免疫检查点抑制剂治疗的头颈部鳞状细胞癌患者外周血生物标志物的总生存预后标志物。

Development of a prognostic signature for overall survival using peripheral blood biomarkers in head and neck squamous cell carcinoma treated with immune checkpoint inhibitors.

机构信息

Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, USA.

Clinical Research Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA.

出版信息

BMC Cancer. 2024 Nov 15;24(1):1406. doi: 10.1186/s12885-024-13051-6.

Abstract

BACKGROUND

We previously reported in recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC) treated with immune checkpoint inhibitors (ICIs), pretreatment higher lactate dehydrogenase (LDH) and absolute (abx) neutrophils as well as lower percent (%) lymphocytes correlated with worse overall survival (OS). In this study we aimed to develop a prognostic signature for HNSCC treated with ICIs using these peripheral blood biomarkers (PBBMs).

METHODS

Adults with R/M HNSCC treated with ICIs at our institution from 08/2012 to 03/2021 with pretreatment PBBMs were included. Follow-up continued until 02/15/2022. The cohort (n = 151) was randomly split into training (n = 100) and testing (n = 51) datasets. A prognostic score incorporating LDH, % lymphocytes, and abx neutrophils was developed from the training dataset using Cox proportional hazards regression. In the training dataset, a grid search identified the optimal cutpoints classifying patients into high, medium, and low-risk groups (trichotomized signature) as well as high vs. low-risk groups (dichotomized signature). The prognostic score, dichotomized and trichotomized signatures were then validated in the testing dataset.

RESULTS

Training and testing datasets showed no clinically meaningful differences in clinicodemographic characteristics or PBBMs. An OS prognostic model was developed from the training dataset: Risk score = 1.24log10(LDH) - 1.95log10(% lymphocytes) + 0.47*log10(abx neutrophils). Optimal risk score cutpoints for the dichotomized and trichotomized signatures were defined in the training dataset, and Kaplan-Meier curves for both dichotomized and trichotomized signatures showed good separation between risk groups. Risk scores were calculated in the testing dataset, where the trichotomized signature demonstrated overlap between low and medium-risk groups but good separation from the high-risk group while the dichotomized signature showed clear separation between low and high-risk groups. Higher risk score correlated with worse OS (HR 2.08, [95%CI 1.17-3.68], p = 0.012). Progression-free survival Kaplan-Meier curves likewise showed excellent separation between dichotomized risk groups in the training and testing datasets.

CONCLUSIONS

We developed a prognostic signature for OS based on 3 previously identified PBBMs for HNSCC treated with ICIs and identified a high-risk group of patients least likely to have survival benefit from ICIs. This signature may improve ICI patient selection and warrants validation in an independent cohort as well as correlation with CPS.

摘要

背景

我们之前报道了在接受免疫检查点抑制剂(ICI)治疗的复发性/转移性头颈部鳞状细胞癌(R/M HNSCC)患者中,治疗前较高的乳酸脱氢酶(LDH)和绝对(abx)中性粒细胞以及较低的淋巴细胞百分比与总生存期(OS)更差相关。在这项研究中,我们旨在使用这些外周血生物标志物(PBBM)为接受 ICI 治疗的 HNSCC 开发预后标志物。

方法

纳入了在我们机构接受 ICI 治疗的 R/M HNSCC 成年患者,治疗前的 PBBM 符合要求。随访持续到 2022 年 2 月 15 日。该队列(n=151)被随机分为训练集(n=100)和测试集(n=51)。使用 Cox 比例风险回归从训练数据集中开发了一个包含 LDH、%淋巴细胞和 abx 中性粒细胞的预后评分。在训练数据集中,网格搜索确定了最佳切点,将患者分为高、中、低风险组(三分类标志物)和高与低风险组(二分类标志物)。预后评分、二分类和三分类标志物随后在测试数据集中进行验证。

结果

训练集和测试集在临床特征和 PBBM 方面无明显差异。从训练数据集中建立了一个 OS 预后模型:风险评分=1.24log10(LDH)-1.95log10(%淋巴细胞)+0.47*log10(abx 中性粒细胞)。在训练数据集中定义了二分类和三分类标志物的最佳风险评分切点,Kaplan-Meier 曲线显示两组风险之间有良好的分离。在测试数据集中计算了风险评分,三分类标志物显示低危和中危组之间有重叠,但与高危组有很好的分离,而二分类标志物显示低危和高危组之间有明显的分离。较高的风险评分与较差的 OS 相关(HR 2.08,[95%CI 1.17-3.68],p=0.012)。无进展生存期 Kaplan-Meier 曲线同样在训练和测试数据集中显示了二分类风险组之间的良好分离。

结论

我们基于 3 个先前确定的用于接受 ICI 治疗的 HNSCC 的 PBBM 为 OS 开发了一个预后标志物,并确定了一个高危组患者最不可能从 ICI 治疗中获益。该标志物可改善 ICI 患者选择,值得在独立队列中进一步验证,并与 CPS 相关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6913/11566084/20eb20c71eb1/12885_2024_13051_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验