Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Interfaculty Centre (CiMIC), University of Muenster, Muenster, Germany.
Clinic of Radiology, University of Muenster, Muenster, Germany.
Neuropathol Appl Neurobiol. 2024 Dec;50(6):e13015. doi: 10.1111/nan.13015.
Cerebral small vessel diseases (SVDs) involve diverse pathologies of the brain's small blood vessels, leading to cognitive deficits. Cerebral magnetic resonance imaging (MRI) reveals white matter hyperintensities (WMHs), lacunes, microbleeds and enlarged perivascular spaces in SVD patients. Although correlations of MRI and histopathology help to understand the pathogenesis of SVD, they do not explain disease progression. Mouse models, both genetic and sporadic, are valuable for studying SVD, but their resemblance to clinical SVD is unclear. The study examined similarities and differences between mouse models of SVDs and human nonamyloid SVD specimens.
We analysed four mouse models of SVD (hypertensive BPH mice, Col4a1 mutants, Notch3 mutants and Htra1 mice) at different stages for changes in myelin, blood-brain barrier (BBB) markers, immune cell populations and immune activation. The observations from mouse models were compared with human SVD specimens from different regions, including the periventricular, frontal, central and occipital white matter. Postmortem MRI followed by MBP immunostaining was used to identify white matter lesions (WMLs).
Only Notch3 mutant and hypertensive BPH mice showed significant changes in myelin basic protein (MBP) immunostaining, correlating with MRI patterns. These changes were linked to altered microglial morphology and focal plasma protein staining around blood vessels, without peripheral immune cell infiltration. In human specimens, both normal-appearing white matter (NAWM) and WMLs lacked peripheral cell infiltration. However, WMLs displayed altered microglial morphology, reduced myelin staining and occasional fibrinogen staining around arterioles and venules.
Our data show that Notch3 mutants and hypertensive BPH/2J mice recapitulate several features of human SVD, including microglial activation, focal sites of demyelination and perivascular plasma protein leakage without peripheral immune cell infiltration.
脑小血管疾病(SVD)涉及脑小血管的多种病理学改变,导致认知功能障碍。脑磁共振成像(MRI)显示 SVD 患者的脑白质高信号(WMHs)、腔隙、微出血和扩大的血管周围间隙。虽然 MRI 与组织病理学的相关性有助于了解 SVD 的发病机制,但它们并不能解释疾病的进展。遗传和散发性的小鼠模型对于研究 SVD 非常有价值,但它们与临床 SVD 的相似性尚不清楚。本研究旨在分析 SVD 小鼠模型与非淀粉样 SVD 人类标本之间的异同。
我们分析了 4 种 SVD 小鼠模型(高血压 BPH 小鼠、Col4a1 突变体、Notch3 突变体和 Htra1 小鼠)在不同阶段的髓鞘、血脑屏障(BBB)标志物、免疫细胞群体和免疫激活的变化。将小鼠模型的观察结果与来自不同区域的人类 SVD 标本进行比较,包括脑室周围、额、中、枕叶白质。死后 MRI 后进行髓鞘碱性蛋白(MBP)免疫染色,以识别脑白质病变(WML)。
只有 Notch3 突变体和高血压 BPH 小鼠的髓鞘碱性蛋白(MBP)免疫染色出现显著变化,与 MRI 模式相关。这些变化与小胶质细胞形态改变和血管周围的局灶性血浆蛋白染色有关,没有外周免疫细胞浸润。在人类标本中,正常外观的白质(NAWM)和 WML 均无外周细胞浸润。然而,WML 显示小胶质细胞形态改变、髓鞘染色减少和偶尔在小动脉和小静脉周围纤维蛋白原染色。
我们的数据表明,Notch3 突变体和高血压 BPH/2J 小鼠重现了人类 SVD 的一些特征,包括小胶质细胞激活、局灶性脱髓鞘和血管周围血浆蛋白渗漏,而无外周免疫细胞浸润。