School of Safety Engineering, China University of Mining and Technology, Xuzhou, China.
Guizhou Energy Industry Research Institute Co., Ltd., Guiyang, China.
PLoS One. 2024 Nov 15;19(11):e0313360. doi: 10.1371/journal.pone.0313360. eCollection 2024.
To investigate the crack propagation mechanisms in low-permeability coal seams induced by liquid CO2 phase change blasting under different blasting pressures, this research presents an experimental study conducted on a small liquid CO2 phase change blasting test system. The failure mode, crack morphology, and distribution characteristics of the coal rock model specimens under different liquid CO2 phase change blasting pressure were revealed, analyzing the crack shapes and expansion process. The results show that with increasing blasting pressure, both the number and complexity of cracks significantly increase under liquid CO2 phase change blasting, evolving from simple linear cracks to more complex multi-directional networks. Furthermore, the process of crack generation and expansion during liquid CO2 phase change blasting in coal and rock is controlled by the interaction of shock waves and quasi-static stress resulting from high-pressure CO2 phase transition in the borehole. Cracks form in distinct zones: the broken zone, where shock waves cause severe crushing near the borehole; the crack zone, where quasi-static tensile stress drives crack propagation. Higher confining and CO2 blasting pressures increase crack propagation. The research results offer valuable insights for optimizing blasting design in liquid CO2 phase change fracturing.
为研究不同爆炸压力下液态 CO2 相变爆破对低渗煤层中裂纹扩展的作用机制,在小型液态 CO2 相变爆破试验系统上进行了实验研究。揭示了不同液态 CO2 相变爆破压力下煤岩模型试件的破坏模式、裂纹形态和分布特征,分析了裂纹的形状和扩展过程。结果表明,随着爆破压力的增加,液态 CO2 相变爆破下的裂纹数量和复杂性显著增加,从简单的线性裂纹演变为更复杂的多方向网络。此外,煤岩中液态 CO2 相变爆破时裂纹产生和扩展的过程受孔内高压 CO2 相变引起的冲击波和准静态应力的相互作用控制。裂纹形成在明显的区域:破碎区,冲击波在孔附近造成严重破碎;裂纹区,准静态拉伸应力驱动裂纹扩展。较高的围压和 CO2 爆破压力会增加裂纹的扩展。研究结果为优化液态 CO2 相变压裂爆破设计提供了有价值的见解。