Suppr超能文献

运用定量构效关系和定量构效活性关系分析方法阐明蝌蚪毒性相关的分子机制。

Elucidation of molecular mechanisms involved in tadpole toxicity employing QSTR and q-RASAR approach.

机构信息

Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.

Department of Pharmaceutical Chemistry, Dr. K. V. Subba Reddy Institute of Pharmacy, Dupadu, Kurnool, Andhra Pradesh, India, 518218.

出版信息

Aquat Toxicol. 2024 Dec;277:107136. doi: 10.1016/j.aquatox.2024.107136. Epub 2024 Nov 2.

Abstract

Tadpoles, as early developmental stages of frogs, are vital indicators of toxicity and environmental health in ecosystems exposed to harmful organic compounds from industrial and runoff sources. Evaluating each compound individually is challenging, necessitating the use of in silico methods like Quantitative Structure Toxicity-Relationship (QSTR) and Quantitative Read-Across Structure-Activity Relationship (q-RASAR). Utilizing the comprehensive US EPA's ECOTOX database, which includes acute LC toxicity and chronic endpoints, we extracted crucial data such as study types, exposure routes, and chemical categories. Regression-based QSTR and q-RASAR models were developed from this dataset, emphasizing key chemical descriptors. Lipophilicity and unsaturation were significant for predicting acute toxicity, while electrophilicity, nucleophilicity, and molecular branching were crucial for chronic toxicity predictions. Additionally, q-RASAR models integrated with the "intelligent consensus" algorithm were employed to enhance predictive accuracy. The performance of these models was rigorously compared across various approaches. These refined models not only predict the toxicity of untested compounds but also reveal underlying structural influences. Validation through comparison with existing literature affirmed the relevance and robustness of our approach in ecotoxicology.

摘要

蝌蚪是青蛙的早期发育阶段,对于暴露于工业和径流源的有害有机化合物的生态系统中的毒性和环境健康是至关重要的指标。评估每个化合物的毒性具有挑战性,需要使用定量结构毒性关系(QSTR)和定量读架结构活性关系(q-RASAR)等计算方法。我们利用美国环保署(EPA)全面的 ECOTOX 数据库,其中包括急性 LC 毒性和慢性终点,从该数据集中提取了关键数据,如研究类型、暴露途径和化学类别。从这个数据集开发了基于回归的 QSTR 和 q-RASAR 模型,强调了关键的化学描述符。亲脂性和不饱和性对预测急性毒性很重要,而亲电性、亲核性和分子分支对慢性毒性预测至关重要。此外,还使用集成了“智能共识”算法的 q-RASAR 模型来提高预测准确性。通过各种方法对这些模型的性能进行了严格比较。这些改进后的模型不仅可以预测未测试化合物的毒性,还可以揭示潜在的结构影响。通过与现有文献的比较进行验证,证实了我们在生态毒理学中的方法的相关性和稳健性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验