Suppr超能文献

实现一种植酸酶的热稳定性,其耐热性高达100℃。

Achieving thermostability of a phytase with resistance up to 100 °C.

作者信息

Tu Tao, Wang Qian, Dong Ruyue, Liu Xiaoqing, Penttinen Leena, Hakulinen Nina, Tian Jian, Zhang Wei, Wang Yaru, Luo Huiying, Yao Bin, Huang Huoqing

机构信息

State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.

State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.

出版信息

J Biol Chem. 2024 Dec;300(12):107992. doi: 10.1016/j.jbc.2024.107992. Epub 2024 Nov 14.

Abstract

The development of enzymes with high-temperature resistance up to 100 °C is of significant and practical value in advancing the sustainability of industrial production. Phytase, a crucial enzyme in feed industrial applications, encounters challenges due to its limited heat resistance. Herein, we employed rational design strategies involving the introduction of disulfide bonds, free energy calculation, and B-factor analysis based on the crystal structure of phytase APPAmut4 (1.90 Å), a variant with enhanced expression levels derived from Yersinia intermedia, to improve its thermostability. Among the 144 variants experimentally verified, 29 exhibited significantly improved thermostability with higher t values at 65 °C. Further combination and superposition led to APPAmut9 with an accumulation of five additional pairs of disulfide bonds and six single-point mutation sites, leading to an enhancement in its thermostability with a t value of 256.7 min at 65 °C, which was more than 75-fold higher than that of APPAmut4 (3.4 min). APPAmut9 exhibited a T value of 96 °C, representing a substantial increase of 40.9 °C compared to APPAmut4. Notably, approximately 70% of enzyme activity remained intact after exposure to boiling water at 100 °C for a holding period of 5 min. Significantly, these advantageous modifications were strategically positioned away from the catalytic pocket where enzymatic reactions occur to ensure minimal compromise on catalytic efficiency between APPAmut9 (11,500 ± 1100/mM/s) and APPAmut4 (12,300 ± 1600/mM/s). This study demonstrates the feasibility of engineering phytases with resistance to boiling using rational design strategies.

摘要

开发耐高达100°C高温的酶对于推动工业生产的可持续性具有重大的实际价值。植酸酶是饲料工业应用中的一种关键酶,由于其耐热性有限而面临挑战。在此,我们基于中间耶尔森氏菌来源的表达水平增强变体植酸酶APPAmut4(1.90 Å)的晶体结构,采用了包括引入二硫键、自由能计算和B因子分析在内的合理设计策略,以提高其热稳定性。在144个经实验验证的变体中,29个在65°C时表现出显著提高的热稳定性,具有更高的t值。进一步的组合和叠加产生了APPAmut9,其积累了另外五对二硫键和六个单点突变位点,导致其热稳定性增强,在65°C时t值为256.7分钟,比APPAmut4(3.4分钟)高出75倍以上。APPAmut9的T值为96°C,比APPAmut4大幅提高了40.9°C。值得注意的是,在100°C沸水中保温5分钟后,约70%的酶活性保持完整。重要的是,这些有利的修饰被战略性地定位在远离发生酶促反应的催化口袋的位置,以确保APPAmut9(11,500±1100/mM/s)和APPAmut4(12,300±1600/mM/s)之间的催化效率受到的影响最小。这项研究证明了使用合理设计策略工程改造耐沸水植酸酶的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5bd/11665688/3c92f3d677af/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验