Shetty Shobitha, Hamer Paul D, Stebel Kerstin, Kylling Arve, Hassani Amirhossein, Berntsen Terje Koren, Schneider Philipp
NILU, Kjeller, Norway; Department of Geosciences, University of Oslo, Oslo, Norway.
NILU, Kjeller, Norway.
Environ Res. 2025 Jan 1;264(Pt 2):120363. doi: 10.1016/j.envres.2024.120363. Epub 2024 Nov 13.
Fine particulate matter (PM) is a key air quality indicator due to its adverse health impacts. Accurate PM assessment requires high-resolution (e.g., atleast 1 km) daily data, yet current methods face challenges in balancing accuracy, coverage, and resolution. Chemical transport models such as those from the Copernicus Atmosphere Monitoring Service (CAMS) offer continuous data but their relatively coarse resolution can introduce uncertainties. Here we present a synergistic Machine Learning (ML)-based approach called S-MESH (Satellite and ML-based Estimation of Surface air quality at High resolution) for estimating daily surface PM over Europe at 1 km spatial resolution and demonstrate its performance for the years 2021 and 2022. The approach enhances and downscales the CAMS regional ensemble 24 h PM forecast by training a stacked XGBoost model against station observations, effectively integrating satellite-derived data and modeled meteorological variables. Overall, against station observations, S-MESH (mean absolute error (MAE) of 3.54 μg/m) shows higher accuracy than the CAMS forecast (MAE of 4.18 μg/m) and is approaching the accuracy of the CAMS regional interim reanalysis (MAE of 3.21 μg/m), while exhibiting a significantly reduced mean bias (MB of -0.3 μg/m vs. -1.5 μg/m for the reanalysis). At the same time, S-MESH requires substantially less computational resources and processing time. At concentrations >20 μg/m, S-MESH outperforms the reanalysis (MB of -7.3 μg/m and -10.3 μg/m respectively), and reliably captures high pollution events in both space and time. In the eastern study area, where the reanalysis often underestimates, S-MESH better captures high levels of PM mostly from residential heating. S-MESH effectively tracks day-to-day variability, with a temporal relative absolute error of 5% (reanalysis 10%). Exhibiting good performance at high pollution events coupled with its high spatial resolution and rapid estimation speed, S-MESH can be highly relevant for air quality assessments where both resolution and timeliness are critical.
细颗粒物(PM)因其对健康的不利影响而成为关键的空气质量指标。准确的PM评估需要高分辨率(例如至少1公里)的每日数据,但目前的方法在平衡准确性、覆盖范围和分辨率方面面临挑战。像哥白尼大气监测服务(CAMS)提供的化学传输模型能提供连续数据,但其相对较粗的分辨率可能会引入不确定性。在此,我们提出一种基于机器学习(ML)的协同方法,称为S-MESH(基于卫星和机器学习的高分辨率地表空气质量估计),用于以1公里的空间分辨率估算欧洲每日地表PM,并展示其在2021年和2022年的性能。该方法通过针对站点观测数据训练一个堆叠式XGBoost模型,增强并缩小CAMS区域集合24小时PM预报,有效整合卫星衍生数据和模拟气象变量。总体而言,与站点观测相比,S-MESH(平均绝对误差(MAE)为3.54μg/m³)显示出比CAMS预报(MAE为4.18μg/m³)更高的准确性,并且接近CAMS区域中期再分析的准确性(MAE为3.21μg/m³),同时平均偏差显著降低(再分析的MB为-1.5μg/m³,而S-MESH为-0.3μg/m³)。与此同时,S-MESH所需的计算资源和处理时间大幅减少。在浓度>20μg/m³时,S-MESH的表现优于再分析(MB分别为-7.3μg/m³和-10.3μg/m³),并能在空间和时间上可靠地捕捉高污染事件。在再分析经常低估的东部研究区域,S-MESH能更好地捕捉主要来自住宅供暖的高浓度PM。S-MESH能有效跟踪每日变化,时间相对绝对误差为5%(再分析为10%)。S-MESH在高污染事件中表现良好,加上其高空间分辨率和快速估计速度,对于分辨率和及时性都至关重要的空气质量评估可能具有高度相关性。