Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, USA.
Nat Commun. 2024 Nov 15;15(1):9899. doi: 10.1038/s41467-024-54126-z.
Specificity of the ubiquitin-proteasome system depends on E3 ligase-substrate interactions. Many such pairings depend on E3 ligases binding to peptide-like sequences - termed N- or C-degrons - at the termini of substrates. However, our knowledge of structural features distinguishing closely related C-degron substrate-E3 pairings is limited. Here, by systematically comparing ubiquitylation activities towards a suite of common model substrates, and defining interactions by biochemistry, crystallography, and cryo-EM, we reveal principles of C-degron recognition across the KLHDCX family of Cullin-RING ligases (CRLs). First, a motif common across these E3 ligases anchors a substrate's C-terminus. However, distinct locations of this C-terminus anchor motif in different blades of the KLHDC2, KLHDC3, and KLHDC10 β-propellers establishes distinct relative positioning and molecular environments for substrate C-termini. Second, our structural data show KLHDC3 has a pre-formed pocket establishing preference for an Arg or Gln preceding a C-terminal Gly, whereas conformational malleability contributes to KLHDC10's recognition of varying features adjacent to substrate C-termini. Finally, additional non-consensus interactions, mediated by C-degron binding grooves and/or by distal propeller surfaces and substrate globular domains, can substantially impact substrate binding and ubiquitylatability. Overall, the data reveal combinatorial mechanisms determining specificity and plasticity of substrate recognition by KLDCX-family C-degron E3 ligases.
泛素-蛋白酶体系统的特异性取决于 E3 连接酶-底物相互作用。许多这样的配对依赖于 E3 连接酶与底物末端的肽样序列(称为 N-或 C-降解序列)结合。然而,我们对区分密切相关的 C-降解序列底物-E3 配对的结构特征的了解有限。在这里,我们通过系统比较一套常见模型底物的泛素化活性,并通过生物化学、晶体学和 cryo-EM 来定义相互作用,揭示了 KLHDCX 家族 Cullin-RING 连接酶(CRLs)中 C-降解序列识别的原则。首先,这些 E3 连接酶共有的一个基序锚定了底物的 C 末端。然而,在 KLHDC2、KLHDC3 和 KLHDC10 β-螺旋桨的不同叶片中,该 C 末端锚定基序的位置不同,为底物 C 末端建立了不同的相对定位和分子环境。其次,我们的结构数据表明 KLHDC3 具有预先形成的口袋,优先识别 C 末端甘氨酸之前的精氨酸或谷氨酰胺,而构象可塑性有助于 KLHDC10 识别底物 C 末端附近不同的特征。最后,通过 C-降解序列结合槽和/或通过远端螺旋桨表面和底物球状结构域介导的额外非共识相互作用,可以显著影响底物结合和泛素化能力。总的来说,这些数据揭示了决定 KLDCX 家族 C-降解序列 E3 连接酶特异性和可塑性的组合机制。