Suppr超能文献

聊天机器人在手外科门诊计费方面显示出中等程度的评分者间信度。

Chatbot Demonstrates Moderate Interrater Reliability in Billing for Hand Surgery Clinic Encounters.

作者信息

Latario Luke D, Fowler John R

机构信息

University of Pittsburgh Medical Center Passavant, PA, USA.

University of Pittsburgh, PA, USA.

出版信息

Hand (N Y). 2024 Nov 16:15589447241295328. doi: 10.1177/15589447241295328.

Abstract

BACKGROUND

Artificial intelligence offers opportunities to improve the burden of health care administrative tasks. Application of machine learning to coding and billing for clinic encounters may represent time- and cost-saving benefits with low risk to patient outcomes.

METHODS

Gemini, a publicly available large language model chatbot, was queried with 139 de-identified patient encounters from a single surgeon and asked to provide the Current Procedural Terminology code based on the criteria for different encounter types. Percent agreement and Cohen's kappa coefficient were calculated.

RESULTS

Gemini demonstrated 68% agreement for all encounter types, with a kappa coefficient of 0.586 corresponding to moderate interrater reliability. Agreement was highest for postoperative encounters (n = 43) with 98% agreement and lowest for new encounters (n = 27) with 48% agreement. Gemini recommended billing levels greater than the surgeon's billing level 31 times and lower billing levels 10 times, with 4 wrong encounter type codes.

CONCLUSIONS

A publicly available chatbot without specific programming for health care billing demonstrated moderate interrater reliability with a hand surgeon in billing clinic encounters. Future integration of artificial intelligence tools in physician workflow may improve the accuracy and speed of billing encounters and lower administrative costs.

摘要

背景

人工智能为减轻医疗保健管理任务的负担提供了机会。将机器学习应用于临床诊疗的编码和计费可能具有节省时间和成本的优势,且对患者预后风险较低。

方法

使用来自一位外科医生的139份去识别化患者诊疗记录查询公开可用的大型语言模型聊天机器人Gemini,并要求其根据不同诊疗类型的标准提供当前程序术语代码。计算百分比一致性和科恩kappa系数。

结果

Gemini对所有诊疗类型的一致性为68%,kappa系数为0.586,对应中等程度的评分者间信度。术后诊疗记录(n = 43)的一致性最高,为98%,新诊疗记录(n = 27)的一致性最低,为48%。Gemini推荐的计费级别高于外科医生计费级别的有31次,低于计费级别的有10次,出现了4次错误的诊疗类型代码。

结论

一个没有针对医疗保健计费进行特定编程的公开可用聊天机器人在与手外科医生进行临床诊疗计费时表现出中等程度的评分者间信度。未来将人工智能工具整合到医生工作流程中可能会提高计费诊疗的准确性和速度,并降低管理成本。

相似文献

1
Chatbot Demonstrates Moderate Interrater Reliability in Billing for Hand Surgery Clinic Encounters.
Hand (N Y). 2024 Nov 16:15589447241295328. doi: 10.1177/15589447241295328.
2
Artificial Intelligence to Predict Billing Code Levels of Emergency Department Encounters.
Ann Emerg Med. 2025 Jan;85(1):63-73. doi: 10.1016/j.annemergmed.2024.07.011. Epub 2024 Sep 24.
5
Coding and Billing in Surgical Education: A Systems-Based Practice Education Program.
J Surg Educ. 2017 Mar-Apr;74(2):199-202. doi: 10.1016/j.jsurg.2016.08.011. Epub 2016 Sep 16.
6
Validation of use of billing codes for identifying telemedicine encounters in administrative data.
BMC Health Serv Res. 2019 Dec 3;19(1):928. doi: 10.1186/s12913-019-4753-2.
7
Can Natural Language Processing and Artificial Intelligence Automate The Generation of Billing Codes From Operative Note Dictations?
Global Spine J. 2023 Sep;13(7):1946-1955. doi: 10.1177/21925682211062831. Epub 2022 Feb 28.
8
Trends in Physician Payments for Hand Surgery Consultations and Clinic Visits.
J Hand Surg Am. 2024 Nov;49(11):1140.e1-1140.e7. doi: 10.1016/j.jhsa.2023.02.005. Epub 2023 Mar 28.

本文引用的文献

1
Performance of Two Artificial Intelligence Generative Language Models on the Orthopaedic In-Training Examination.
Orthopedics. 2024 May-Jun;47(3):e146-e150. doi: 10.3928/01477447-20240304-02. Epub 2024 Mar 12.
2
Artificially Intelligent Billing in Spine Surgery: An Analysis of a Large Language Model.
Global Spine J. 2025 Mar;15(2):1113-1120. doi: 10.1177/21925682231224753. Epub 2023 Dec 26.
3
Evaluating ChatGPT Performance on the Orthopaedic In-Training Examination.
JB JS Open Access. 2023 Sep 8;8(3). doi: 10.2106/JBJS.OA.23.00056. eCollection 2023 Jul-Sep.
5
Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models.
PLOS Digit Health. 2023 Feb 9;2(2):e0000198. doi: 10.1371/journal.pdig.0000198. eCollection 2023 Feb.
7
Documentation from trained medical students has a low rate of relative downcoding for emergency medicine encounters.
AEM Educ Train. 2022 Jun 1;6(3):e10741. doi: 10.1002/aet2.10741. eCollection 2022 Jun.
8
Medical Documentation Burden Among US Office-Based Physicians in 2019: A National Study.
JAMA Intern Med. 2022 May 1;182(5):564-566. doi: 10.1001/jamainternmed.2022.0372.
9
Can Natural Language Processing and Artificial Intelligence Automate The Generation of Billing Codes From Operative Note Dictations?
Global Spine J. 2023 Sep;13(7):1946-1955. doi: 10.1177/21925682211062831. Epub 2022 Feb 28.
10
Administrative Expenses in the US Health Care System: Why So High?
JAMA. 2021 Nov 2;326(17):1679-1680. doi: 10.1001/jama.2021.17318.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验