Zaidat Bashar, Tang Justin, Arvind Varun, Geng Eric A, Cho Brian, Duey Akiro H, Dominy Calista, Riew Kiehyun D, Cho Samuel K, Kim Jun S
Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Neurological Surgery, Weill Cornell Medical Center- Och Spine Hospital, New York, NY, USA.
Global Spine J. 2024 Sep;14(7):2022-2030. doi: 10.1177/21925682231164935. Epub 2023 Mar 18.
Retrospective cohort.
Billing and coding-related administrative tasks are a major source of healthcare expenditure in the United States. We aim to show that a second-iteration Natural Language Processing (NLP) machine learning algorithm, XLNet, can automate the generation of CPT codes from operative notes in ACDF, PCDF, and CDA procedures.
We collected 922 operative notes from patients who underwent ACDF, PCDF, or CDA from 2015 to 2020 and included CPT codes generated by the billing code department. We trained XLNet, a generalized autoregressive pretraining method, on this dataset and tested its performance by calculating AUROC and AUPRC.
The performance of the model approached human accuracy. Trial 1 (ACDF) achieved an AUROC of .82 (range: .48-.93), an AUPRC of .81 (range: .45-.97), and class-by-class accuracy of 77% (range: 34%-91%); trial 2 (PCDF) achieved an AUROC of .83 (.44-.94), an AUPRC of .70 (.45-.96), and class-by-class accuracy of 71% (42%-93%); trial 3 (ACDF and CDA) achieved an AUROC of .95 (.68-.99), an AUPRC of .91 (.56-.98), and class-by-class accuracy of 87% (63%-99%); trial 4 (ACDF, PCDF, CDA) achieved an AUROC of .95 (.76-.99), an AUPRC of .84 (.49-.99), and class-by-class accuracy of 88% (70%-99%).
We show that the XLNet model can be successfully applied to orthopedic surgeon's operative notes to generate CPT billing codes. As NLP models as a whole continue to improve, billing can be greatly augmented with artificial intelligence assisted generation of CPT billing codes which will help minimize error and promote standardization in the process.
回顾性队列研究。
在美国,与计费和编码相关的行政任务是医疗保健支出的主要来源。我们旨在证明,第二代自然语言处理(NLP)机器学习算法XLNet能够根据颈椎前路椎间盘切除融合术(ACDF)、后路颈椎间盘切除术(PCDF)和颈椎间盘置换术(CDA)的手术记录自动生成现行程序编码(CPT)。
我们收集了2015年至2020年接受ACDF、PCDF或CDA手术患者的922份手术记录,并纳入了计费编码部门生成的CPT编码。我们在这个数据集上训练了XLNet(一种广义自回归预训练方法),并通过计算曲线下面积(AUROC)和精确率-召回率曲线下面积(AUPRC)来测试其性能。
该模型的性能接近人类准确率。试验1(ACDF)的AUROC为0.82(范围:0.48 - 0.93),AUPRC为0.81(范围:0.45 - 0.97),逐类准确率为77%(范围:34% - 91%);试验2(PCDF)的AUROC为0.83(0.44 - 0.94),AUPRC为0.70(0.45 - 0.96),逐类准确率为71%(42% - 93%);试验3(ACDF和CDA)的AUROC为0.95(0.68 - 0.99),AUPRC为0.91(0.56 - 0.98),逐类准确率为8