Suppr超能文献

A comprehensive review of the proline mimic azetidine-2-carboxylic acid (A2C).

作者信息

Rodgers Kenneth J, Kabalan James, Phillips Connor R

机构信息

The Neurotoxin Research Group, The University of Technology Sydney, Australia.

The Neurotoxin Research Group, The University of Technology Sydney, Australia.

出版信息

Toxicology. 2025 Jan;510:153999. doi: 10.1016/j.tox.2024.153999. Epub 2024 Nov 15.

Abstract

The imino acid azetidine-2-carboxylic acid (A2C), a proline homologue, was first identified in liliaceous plants in 1955. Its ability to exchange for proline in protein synthesis is responsible for its teratogenic effects and has made it a very useful tool for generating non-native proteins to study proteotoxic stress and ER stress. The tRNA synthetases from some A2C-producing plants can discriminate between proline and A2C, but for most plants and for mammalian cells, A2C is mistakenly used in protein synthesis in place of proline and can avoid cell proof-reading mechanisms. Human exposure to A2C would be very limited had it not been for the development of sugar beets as an alternative source of dietary sucrose to sugar cane, and the widespread use of the plentiful byproducts as livestock fodder. Fodder beets, a very high yielding forage crop, are also used as livestock fodder particularly for lactating cows. It is therefore possible for A2C to enter the human food chain and impact human health. It was hypothesised that its ability to replace proline in protein synthesis generates immunogenic neo-epitopes in myelin basic protein and could therefore be a causative factor for multiple sclerosis. In this review we discuss the distribution of A2C in nature, what is known about its toxicity, and the impact of the proline to A2C exchange on protein structure and function and in particular the proteins collagen and myelin basic protein. We summarise analytical approaches that can be used to quantify A2C in complex biological samples and the adaptations made by some organisms to avoid its toxic effects. We summarise the evidence for human exposure to A2C and the geographical and temporal links to higher incidences of MS. Finally, we highlight gaps in our knowledge that require addressing before we can determine if this non-protein amino acid is a threat to human health.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验