Saporta Raphaël, Nielsen Elisabet I, Hansen Jon U, Liepinsh Edgars, Minichmayr Iris K, Friberg Lena E
Department of Pharmacy, Uppsala University, Uppsala, Sweden.
Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark.
Int J Antimicrob Agents. 2024 Dec;64(6):107389. doi: 10.1016/j.ijantimicag.2024.107389. Epub 2024 Nov 17.
Carbapenem-resistant bacteria pose a threat to public health. Characterising the pharmacokinetics-pharmacodynamics (PKPD) of meropenem longitudinally in vivo against resistant bacteria could provide valuable information for development and translation of carbapenem-based therapies.
To assess the time course of meropenem effects in vivo against strains with high MIC to predict PK/PD indices and expected efficacy in patients using a modelling approach.
A PKPD model was built on longitudinal bacterial count data to describe meropenem effects against six Escherichia coli and Klebsiella pneumoniae strains (MIC values 32-128 mg/L) in a 24 h mouse thigh infection model. The model was used to derive PK/PD indices from simulated studies in mice and to predict the efficacy of different infusion durations with high-dose meropenem (2 g q8 h/q12 h for normal/reduced kidney function) in patients.
Data from 592 mice were available for model development. The estimated meropenem concentration-dependent killing rate was not associated with differences in MIC. The fraction of time that unbound concentrations exceeded EC (fT, EC = 1.01 mg/L) showed higher correlations than fT. For all investigated strains, bacteriostasis at 24 h was predicted for prolonged infusions of high-dose meropenem monotherapy in >90% of patients.
The developed PKPD model successfully described bacterial growth and meropenem killing over time in the thigh infection model. For the investigated strains, the MIC, determined in vitro, or MIC-based PK/PD indices, did not predict in vivo response. Simulations suggested prolonged infusions of high-dose meropenem to be efficacious in patients infected by the studied strains.
耐碳青霉烯类细菌对公众健康构成威胁。纵向在体内表征美罗培南针对耐药菌的药代动力学-药效学(PKPD)特性可为基于碳青霉烯类的治疗方法的开发和转化提供有价值的信息。
采用建模方法评估美罗培南在体内针对高 MIC 菌株的效应随时间的变化过程,以预测 PK/PD 指数及患者的预期疗效。
基于纵向细菌计数数据建立 PKPD 模型,以描述美罗培南在 24 小时小鼠大腿感染模型中对六种大肠杆菌和肺炎克雷伯菌菌株(MIC 值为 32 - 128 mg/L)的作用。该模型用于从小鼠模拟研究中推导 PK/PD 指数,并预测高剂量美罗培南(正常/肾功能减退时分别为 2 g q8 h/q12 h)不同输注持续时间对患者的疗效。
592 只小鼠的数据可用于模型开发。估计的美罗培南浓度依赖性杀菌率与 MIC 的差异无关。游离浓度超过 EC(fT,EC = 1.01 mg/L)的时间分数显示出比 fT 更高的相关性。对于所有研究菌株,预测在超过 90%的患者中,高剂量美罗培南单药延长输注在 24 小时时可实现抑菌。
所开发的 PKPD 模型成功描述了大腿感染模型中细菌生长和美罗培南杀伤随时间的变化。对于所研究的菌株,体外测定的 MIC 或基于 MIC 的 PK/PD 指数不能预测体内反应。模拟结果表明,高剂量美罗培南延长输注对受研究菌株感染的患者有效。