Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genova, Genova, Italy.
Department of Pharmacy (DIFAR), University of Genova, Genova, Italy.
Stem Cell Res Ther. 2024 Nov 17;15(1):433. doi: 10.1186/s13287-024-04018-2.
In vitro models for drug testing constitute a valuable and simplified in-vivo-like assay to better comprehend the biological drugs effect. In particular, the combination of neuronal cultures with Micro-Electrode Arrays (MEAs) constitutes a reliable system to investigate the effect of drugs aimed at manipulating the neural activity and causing controlled changes in the electrophysiology. While chemical modulation in rodents' models has been extensively studied in the literature, electrophysiological variations caused by chemical modulation on neuronal networks derived from human induced pluripotent stem cells (hiPSCs) still lack a thorough characterization.
In this work, we created three different configurations of hiPSCs-derived neuronal networks composed of fully glutamatergic neurons (100E), 75% of glutamatergic and 25% of GABAergic neurons (75E25I) and fully GABAergic neurons (100I). We focused on the effects caused by antagonists of three of the most relevant ionotropic receptors of the human brain, i.e., 2-amino-5-phosphonovaleric (APV, NMDA receptors antagonist), 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, AMPA receptors antagonist), and bicuculline, picrotoxin and pentylenetetrazole (BIC, PTX, and PTZ, respectively, GABA receptors antagonists).
We found that APV and CNQX completely abolished the network bursting activity and caused major changes in the functional connectivity. On the other hand, the effect of BIC, PTX and PTZ mostly affected configurations in which the inhibitory component was present by increasing the firing and network bursting activity as well as the functional connectivity.
Our work revealed that hiPSCs-derived neuronal networks are very sensitive to pharmacological manipulation of the excitatory ionotropic glutamatergic and inhibitory ionotropic GABAergic transmission, representing a preliminary and necessary step forward in the field of drug testing that can rely on pathological networks of human origin.
药物测试的体外模型构成了一种有价值且简化的类体内检测,有助于更好地理解生物药物的作用。特别是,神经元培养与微电极阵列(MEA)的结合构成了一种可靠的系统,可以研究旨在操纵神经活动并引起电生理学受控变化的药物的作用。虽然化学调制在文献中已被广泛研究,但源自人类诱导多能干细胞(hiPSC)的神经元网络的化学调制引起的电生理学变化仍缺乏彻底的特征描述。
在这项工作中,我们创建了三种不同配置的 hiPSC 衍生的神经元网络,由完全谷氨酸能神经元(100E)、75%谷氨酸能和 25%γ-氨基丁酸能神经元(75E25I)和完全γ-氨基丁酸能神经元(100I)组成。我们专注于三种最相关的人类大脑离子型受体的拮抗剂引起的影响,即 2-氨基-5-磷戊酸(APV,NMDA 受体拮抗剂)、6-氰基-7-硝基喹喔啉-2,3-二酮(CNQX,AMPA 受体拮抗剂)和荷包牡丹碱、胡椒碱和戊四氮(BIC、PTX 和 PTZ,分别为 GABA 受体拮抗剂)。
我们发现,APV 和 CNQX 完全消除了网络爆发活动,并导致功能连接发生重大变化。另一方面,BIC、PTX 和 PTZ 的作用主要通过增加放电和网络爆发活动以及功能连接,影响存在抑制性成分的配置。
我们的工作表明,hiPSC 衍生的神经元网络对兴奋性离子型谷氨酸能和抑制性离子型 GABA 能传递的药理学操纵非常敏感,代表了药物测试领域的初步和必要的一步,可以依赖于人类起源的病理性网络。