Huang Min, Zhao Hang, Chen Yazhou
Army Engineering University, Shijiazhuang Campus, Shijiazhuang, 050003, China.
College of Information Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
Sci Rep. 2024 Nov 17;14(1):28364. doi: 10.1038/s41598-024-79674-8.
Synthetic aperture radar (SAR) is crucial for military reconnaissance and remote sensing, but image quality can be affected by various factors, impacting target detection performance. Thus, pre-evaluation of SAR image quality is essential to filter out poor-quality images, optimize resource allocation, and enhance detection accuracy and efficiency. This paper proposes a comprehensive SAR image quality evaluation method combining objective and subjective approaches. Specifically, the processes encompassing the generation of a series of disturbed SAR images on the SAR ship detection dataset (SSDD), the calculation of various objective quality indicators for those images, and the assignment of a subjective quality label to each image through subjective evaluation. Based on the dataset constructed by the above evaluation methods, the IHHO-XGBoost model was developed. This model uses an improved harris hawk optimization (IHHO) algorithm to optimize extreme gradient boosting (XGBoost) hyperparameters. The IHHO algorithm effectively alleviates the problem of getting trapped in local optima by improving the escape energy calculation strategy and integrating the average difference evolution mechanism while maintaining the diversity of the population, showing significant advantages over the traditional HHO algorithm. Comparative experiments demonstrate the model's superiority in SAR image quality evaluation. This study validates the scientificity and practicability of the proposed method, offering new tools for SAR image quality research.
合成孔径雷达(SAR)对军事侦察和遥感至关重要,但图像质量会受到各种因素影响,进而影响目标检测性能。因此,对SAR图像质量进行预评估对于筛选出质量不佳的图像、优化资源分配以及提高检测精度和效率至关重要。本文提出了一种结合客观和主观方法的综合SAR图像质量评估方法。具体而言,该过程包括在SAR舰船检测数据集(SSDD)上生成一系列受干扰的SAR图像、计算这些图像的各种客观质量指标以及通过主观评估为每个图像赋予主观质量标签。基于上述评估方法构建的数据集,开发了IHHO-XGBoost模型。该模型使用改进的哈里斯鹰优化(IHHO)算法来优化极端梯度提升(XGBoost)超参数。IHHO算法通过改进逃逸能量计算策略并整合平均差异进化机制,在保持种群多样性的同时有效缓解了陷入局部最优的问题,与传统HHO算法相比具有显著优势。对比实验证明了该模型在SAR图像质量评估方面的优越性。本研究验证了所提方法的科学性和实用性,为SAR图像质量研究提供了新工具。