Suppr超能文献

基于智能手机和新型多层聚氯乙烯薄膜微流控装置的比色葡萄糖检测卷积神经网络。

Convolutional neural network for colorimetric glucose detection using a smartphone and novel multilayer polyvinyl film microfluidic device.

机构信息

Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.

Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.

出版信息

Sci Rep. 2024 Nov 17;14(1):28377. doi: 10.1038/s41598-024-79581-y.

Abstract

Detecting glucose levels is crucial for diabetes patients as it enables timely and effective management, preventing complications and promoting overall health. In this endeavor, we have designed a novel, affordable point-of-care diagnostic device utilizing microfluidic principles, a smartphone camera, and established laboratory colorimetric methods for accurate glucose estimation. Our proposed microfluidic device comprises layers of adhesive poly-vinyl films stacked on a poly methyl methacrylate (PMMA) base sheet, with micro-channel contours precision-cut using a cutting printer. Employing the gold standard glucose-oxidase/peroxidase reaction on this microfluidic platform, we achieve enzymatic glucose determination. The resulting colored complex, formed by phenol and 4-aminoantipyrine in the presence of hydrogen peroxide generated during glucose oxidation, is captured at various glucose concentrations using a smartphone camera. Raw images are processed and utilized as input data for a 2-D convolutional neural network (CNN) deep learning classifier, demonstrating an impressive 95% overall accuracy against new images. The glucose predictions done by CNN are compared with ISO 15197:2013/2015 gold standard norms. Furthermore, the classifier exhibits outstanding precision, recall, and F1 score of 94%, 93%, and 93%, respectively, as validated through our study, showcasing its exceptional predictive capability. Next, a user-friendly smartphone application named "GLUCOLENS AI" was developed to capture images, perform image processing, and communicate with cloud server containing the CNN classifier. The developed CNN model can be successfully used as a pre-trained model for future glucose concentration predictions.

摘要

检测血糖水平对糖尿病患者至关重要,因为它可以实现及时有效的管理,预防并发症并促进整体健康。在这项努力中,我们设计了一种新颖、经济实惠的即时诊断设备,利用微流控原理、智能手机摄像头和已建立的实验室比色法,实现准确的葡萄糖估计。我们提出的微流控设备由几层粘性聚氯乙烯薄膜堆叠在聚甲基丙烯酸甲酯(PMMA)基板上组成,微通道轮廓采用切割打印机精确切割。在这个微流控平台上采用葡萄糖氧化酶/过氧化物酶反应的金标准,我们实现了酶促葡萄糖测定。在存在过氧化氢的情况下,苯酚和 4-氨基安替比林与葡萄糖氧化生成的有色复合物,在不同的葡萄糖浓度下用智能手机摄像头捕获。原始图像经过处理并用作二维卷积神经网络(CNN)深度学习分类器的输入数据,对新图像的总体准确率达到令人印象深刻的 95%。CNN 进行的葡萄糖预测与 ISO 15197:2013/2015 金标准规范进行比较。此外,该分类器表现出出色的精度、召回率和 F1 分数,分别为 94%、93%和 93%,通过我们的研究得到验证,展示了其出色的预测能力。接下来,开发了一个名为“GLUCOLENS AI”的用户友好型智能手机应用程序,用于捕获图像、进行图像处理以及与包含 CNN 分类器的云服务器进行通信。开发的 CNN 模型可以成功用作未来葡萄糖浓度预测的预训练模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c0c/11570695/d219964c4aa6/41598_2024_79581_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验