Suppr超能文献

基于优化卷积神经网络和改进的黑猩猩优化算法的脑肿瘤分割。

Brain tumor segmentation based on optimized convolutional neural network and improved chimp optimization algorithm.

机构信息

School of Computing, Faculty of Engineering and Computing, Dublin City University, Ireland.

Electrical and Electronic Engineering Department, Cyprus International University, Via Mersin 10, Nicosia, Northern Cyprus, Turkey.

出版信息

Comput Biol Med. 2024 Jan;168:107723. doi: 10.1016/j.compbiomed.2023.107723. Epub 2023 Nov 19.

Abstract

Reliable and accurate brain tumor segmentation is a challenging task even with the appropriate acquisition of brain images. Tumor grading and segmentation utilizing Magnetic Resonance Imaging (MRI) are necessary steps for correct diagnosis and treatment planning. There are different MRI sequence images (T1, Flair, T1ce, T2, etc.) for identifying different parts of the tumor. Due to the diversity in the illumination of each brain imaging modality, different information and details can be obtained from each input modality. Therefore, by using various MRI modalities, the diagnosis system is capable of finding more unique details that lead to a better segmentation result, especially in fuzzy borders. In this study, to achieve an automatic and robust brain tumor segmentation framework using four MRI sequence images, an optimized Convolutional Neural Network (CNN) is proposed. All weight and bias values of the CNN model are adjusted using an Improved Chimp Optimization Algorithm (IChOA). In the first step, all four input images are normalized to find some potential areas of the existing tumor. Next, by employing the IChOA, the best features are selected using a Support Vector Machine (SVM) classifier. Finally, the best-extracted features are fed to the optimized CNN model to classify each object for brain tumor segmentation. Accordingly, the proposed IChOA is utilized for feature selection and optimizing Hyperparameters in the CNN model. The experimental outcomes conducted on the BRATS 2018 dataset demonstrate superior performance (Precision of 97.41 %, Recall of 95.78 %, and Dice Score of 97.04 %) compared to the existing frameworks.

摘要

可靠准确的脑肿瘤分割即使在适当获取脑图像的情况下也是一项具有挑战性的任务。利用磁共振成像(MRI)进行肿瘤分级和分割是正确诊断和治疗计划的必要步骤。有不同的 MRI 序列图像(T1、Flair、T1ce、T2 等)用于识别肿瘤的不同部位。由于每种脑成像方式的光照多样性,从每个输入方式可以获得不同的信息和细节。因此,通过使用各种 MRI 方式,诊断系统能够找到更多独特的细节,从而得到更好的分割结果,特别是在模糊边界处。在这项研究中,为了使用四种 MRI 序列图像实现自动和稳健的脑肿瘤分割框架,提出了一种优化的卷积神经网络(CNN)。使用改进的黑猩猩优化算法(IChOA)调整 CNN 模型的所有权重和偏置值。在第一步中,将所有四个输入图像归一化以找到现有肿瘤的一些潜在区域。接下来,通过使用 IChOA,使用支持向量机(SVM)分类器选择最佳特征。最后,将最佳提取的特征输入到优化的 CNN 模型中,以对脑肿瘤分割进行分类。因此,提出的 IChOA 用于特征选择和优化 CNN 模型中的超参数。在 BRATS 2018 数据集上进行的实验结果表明,与现有框架相比,具有更高的性能(精度为 97.41%,召回率为 95.78%,Dice 得分为 97.04%)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验