Smelik Martin, Zhao Yelin, Mansour Aly Dina, Mahmud Akm Firoj, Sysoev Oleg, Li Xinxiu, Benson Mikael
Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden.
Division of Statistics and Machine Learning, Department of Computer and Information Science, Linköping University, Linköping, Sweden.
Commun Med (Lond). 2024 Nov 17;4(1):234. doi: 10.1038/s43856-024-00671-z.
Cancer screening tests are considered pivotal for early diagnosis and survival. However, the efficacy of these tests for improving survival has recently been questioned. This study aims to test if cancer screening could be improved by biomarkers in peripheral blood based on multi-omics data.
We utilize multi-omics data from 500,000 participants in the UK Biobank. Machine learning is applied to search for proteins, metabolites, genetic variants, or clinical variables to diagnose cancers collectively and individually.
Here we show that the overall performance of the potential blood biomarkers do not outperform clinical variables for collective diagnosis. However, we observe promising results for individual cancers in close proximity to peripheral blood, with an Area Under the Curve (AUC) greater than 0.8.
Our findings suggest that the identification of blood biomarkers for cancer might be complicated by variable overlap between molecular changes in tumor tissues and peripheral blood. This explanation is supported by local proteomics analyses of different tumors, which all show high AUCs, greater than 0.9. Thus, multi-omics biomarkers for the diagnosis of individual cancers may potentially be effective, but not for groups of cancers.
癌症筛查测试被认为对早期诊断和生存至关重要。然而,这些测试对提高生存率的有效性最近受到了质疑。本研究旨在基于多组学数据测试外周血中的生物标志物是否可以改善癌症筛查。
我们利用了英国生物银行中50万名参与者的多组学数据。应用机器学习来搜索蛋白质、代谢物、基因变异或临床变量,以集体和单独诊断癌症。
我们在此表明,潜在血液生物标志物的总体性能在集体诊断方面并不优于临床变量。然而,我们观察到对于外周血附近的个别癌症有很有前景的结果,曲线下面积(AUC)大于0.8。
我们的研究结果表明,肿瘤组织和外周血分子变化之间的可变重叠可能使癌症血液生物标志物的识别变得复杂。不同肿瘤的局部蛋白质组学分析支持了这一解释,所有这些分析都显示出大于0.9的高AUC。因此,用于诊断个别癌症的多组学生物标志物可能具有潜在效果,但不适用于癌症组。