Suppr超能文献

聚合物纳米载体介导的基因递送:使用直接随机光学重建显微镜(dSTORM)可视化和定量DNA封装

Polymer Nano-Carrier-Mediated Gene Delivery: Visualizing and Quantifying DNA Encapsulation Using dSTORM.

作者信息

Shaulli Xhorxhina, Moreno-Echeverri Aura Maria, Andoni Mariza, Waeber Eileen, Ramakrishna Shivaprakash N, Fritsch Cornelia, Vanhecke Dimitri, Rothen-Rutishauser Barbara, Scheffold Frank

机构信息

Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg, CH 1700, Switzerland.

Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH 1700, Switzerland.

出版信息

Small. 2025 Jan;21(1):e2405929. doi: 10.1002/smll.202405929. Epub 2024 Nov 17.

Abstract

The success of gene therapy hinges on the effective encapsulation, protection, and compression of genes. These processes deliver therapeutic genes into designated cells for genetic repair, cellular behavior modification, or therapeutic effect induction. However, quantifying the encapsulation efficiency of small molecules of interest like DNA or RNA into delivery carriers remains challenging. This work shows how super-resolution microscopy, specifically direct stochastic optical reconstruction microscopy (dSTORM), can be employed to visualize and measure the quantity of DNA entering a single carrier. Utilizing pNIPAM/bPEI microgels as model nano-carriers to form polyplexes, DNA entry into the carrier is revealed across different charge ratios at temperatures below and above the volume phase transition of the microgel core. The encapsulation efficiency also depends on DNA length and shape. This work demonstrates the uptake of the carrier entity by primary derived macro-phages and showcases the cell viability of the polyplexes. The study shows that dSTORM is a potent tool for fine-tuning and creating polyplex microgel carrier systems with precise size, shape, and loading capacity at the individual particle level. This advancement shall contribute significantly to optimizing gene delivery systems.

摘要

基因治疗的成功取决于基因的有效封装、保护和压缩。这些过程将治疗性基因传递到指定细胞中,以进行基因修复、改变细胞行为或诱导治疗效果。然而,将诸如DNA或RNA等感兴趣的小分子封装到递送载体中的效率量化仍然具有挑战性。这项工作展示了如何利用超分辨率显微镜,特别是直接随机光学重建显微镜(dSTORM),来可视化和测量进入单个载体的DNA数量。利用聚N-异丙基丙烯酰胺/聚乙烯亚胺(pNIPAM/bPEI)微凝胶作为模型纳米载体形成多聚体,在低于和高于微凝胶核心体积相变温度的不同电荷比下,揭示了DNA进入载体的情况。封装效率还取决于DNA的长度和形状。这项工作证明了原代巨噬细胞对载体实体的摄取,并展示了多聚体的细胞活力。该研究表明,dSTORM是一种强大的工具,可在单个颗粒水平上微调并创建具有精确尺寸、形状和负载能力的多聚体微凝胶载体系统。这一进展将对优化基因递送系统做出重大贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/698b/11707562/eef990d7628a/SMLL-21-2405929-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验